
3. Renewal Theory

• Definition 3 of the Poisson process can be

generalized: Let X1, X2, . . . ,∼ iidF (x) be

non-negative interarrival times. Set

Sn =
∑n

i=1 Xi and N(t) = max {n : Sn ≤ t}.
Then {N(t)} is a renewal process.

• Set µ = E[Xn]. We assume µ > 0 (i.e., F (0)<1)

but we allow the possibility µ = ∞.

• Many questions about more complex processes

can be addressed by identifying a relevant

renewal process. Therefore, we study renewal

theory in some detail.

• The renewal function is m(t) = E[N(t)].

• Writing the c.d.f. of Sn as Fn = F ∗ F ∗ . . . ∗ F ,

the n-fold convolution of F , we have

P[N(t) = n]

= P[Sn ≤ t] − P[Sn+1 ≤ t]

= Fn(t) − Fn+1(t).
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Recall: if X and Y are independent, with c.d.f.

FX and FY respectively, then

FX+Y (z) =

∫ ∞

−∞
FX(z−y)dFY (y) =

∫ ∞

−∞
FY (z−x)dFX(x).

This identity is called a convolution, written

FX+Y = FX ∗ FY = FY ∗ FX .

Taking Laplace transforms gives F̃X+Y = F̃X F̃Y .

• It follows that

m(t) = E[N(t)] =

∞∑

n=1

n
(
Fn(t) − Fn+1(t)

)

=

∞∑

n=1

Fn(t)
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Limit Properties for Renewal Processes

(L1) limn→∞ Sn/n = µ with probability 1.

Why?

(L2) limt→∞ N(t) = ∞ with probability 1.

Why?
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(L3) limt→∞
N(t)

t = 1
µ with probability 1.

Why?
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(L4) The Elementary Renewal Theorem

limt→∞
m(t)

t = 1
µ

• Why is L4 different from L3? Because it is not

always true that, for any stochastic process,

E

[
limt→∞

N(t)
t

]
= limt→∞ E

[
N(t)

t

]
.

counter-example
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Exchanging Expectation and Summation

• If X1, X2, ... are non-negative random variables,

E [
∑∞

n=1 Xn] =
∑∞

n=1 E[Xn].

• For any X1, X2, ... with
∑∞

n=1 E
[
|Xn|

]
< ∞,

E[
∑∞

n=1 Xn] =
∑∞

n=1 E[Xn].

• These results do not require independence; they

are consequences of two basic theorems.

(checking this is an optional exercise.)

Monotone Convergence Theorem: If

Y1, Y2, . . . is an increasing sequence of random

variables (i.e., Yn ≤ Yn+1) then

E
[
limn→∞ Yn

]
= limn→∞ E[Yn].

Dominated Convergence Theorem: For any

Y1, Y2, . . ., if there is a random variable Z with

E[Z] < ∞ and |Yn| < Z for all n, then

E
[
limn→∞ Yn

]
= limn→∞ E[Yn].
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Stopping Times

• A non-negative integer-valued random variable

N is a stopping time for a sequence X1, X2, . . .

if E[N ] < ∞ and {N = n} is determined by

X1, . . . , Xn.

• Example: If cards are dealt successively from a

deck, the position of the first spade is a stopping

time, say N . Note that N − 1, the position of

the last card before a spade appears, is not a

stopping time (but N + 1 is).

• Example: Any gambling strategy cannot

depend on future events! Thus, the decision to

stop gambling must be a stopping time.

• If X1, X2, . . ., are independent, then {N = n} is

independent of Xn+1, Xn+2, . . . if N is a

stopping time. (This is the definition in Ross,

p. 104, but we will use the more general

definition, which will be needed later).
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Example For a renewal process, N(t) + 1 is a

stopping time for the interarrival sequence

X1, X2, . . .

(Is N(t) a stopping time? Why.)

(i) Show {N(t) + 1 = n} is determined by

X1, . . . , Xn

(ii) Show that E[N(t)] < ∞, i.e., check that

m(t) < ∞
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Wald’s Equation: If X1, X2, . . . are iid with

E[|X1|] < ∞ and N is a stopping time, then

E

[∑N
n=1 Xn

]
= E[N ] E[X1]

Proof
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Proof of the elementary Renewal Theorem

(i) Apply Wald’s equation to the stopping time

N(t) + 1, to get lim inft→∞
m(t)

t ≥ 1
µ

note that we use the definition

lim inft→∞ f(t) = limt→∞ {infs>t f(s)}
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(ii) Show lim supt→∞
m(t)

t ≤ 1
µ by applying

Wald’s equation to a truncated renewal process,

with

X̃n =





Xn if Xn ≤ M

M if Xn > M

and S̃n =
∑n

i=1 X̃i, Ñ(t) = sup
{

n : S̃n ≤ t
}

,

µ̃ = E
[
X̃

]
, m̃(t) = E

[
Ñ(t)

]
.
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Example. Customers arrive at a bank as a

Poisson process, rate λ. There is only one clerk,

and service times are iid with distribution G.

Customers only enter the bank if the clerk is

available; if the clerk is busy they go away

without entering. (In queue terminology, this is

an M/G/1 queue with no buffer.)

(a) Identify a relevant renewal process.

(b) At what rate do customers enter the bank?

(what does “rate” mean here?)
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.

(c) What fraction of potential customers enter the

bank?

(d) What fraction of time is the server busy?
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(L5) Central Limit Theorem for N(t).

Suppose µ = E[X1] < ∞ and σ2 = Var(X1) < ∞.

Then,

limt→∞ P

[
N(t)−t/µ

σ
√

t/µ3
< y

]
= 1√

2π

∫ y

−∞ e−x2/2 dx

• This is a consequence of the central limit

theorem for Sn (see Ross, Theorem 3.3.5 for a

proof).

• Why is there a µ3 in the denominator? We can

give a dimension analysis, as a check:
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• A diagram and an informal argument can

suggest a method of proof, and help explain the

result:
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(L6) The Key Renewal Theorem

lim
t→∞

∫ t

0

h(t − x) dm(x) =
1

µ

∫ ∞

0

h(t) dt

Under the requirements that

(i) F is not lattice, i.e. there is no d ≥ 0 such

that
∑∞

n=0 P
[
X1=nd

]
= 1.

(ii) h(t) is directly Riemann integrable (see

following slide).

• L6 can be seen as a result on sums over a

moving window: suppose at time t we consider a

sum Ht with contribution h(t − x) for an event

at time t − x. Then,

Ht =

N(t)−1∑

n=0

h(t − SN(t)−n) =

∫ t

0

h(t − x)dN(x).

Exchanging integration and expectation, we get

E[Ht] =

∫ t

0

h(t−x) E[dN(x)] =

∫ t

0

h(t−x) dm(x).
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Example: Set h(t) =





1 for t ≤ a

0 else
.

Then Ht counts the number of events in the time

window [t − a, t]. In this case, since h(t) is

directly Riemann integrable, (L6) gives the

following result:

(L7) Blackwell’s theorem, part (i)

If F is not lattice, then, for a > 0,

limt→∞ m(t) − m(t − a) = a/µ

How does this follow?
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• If F is lattice, then they key renewal theorem

fails: counter-example...

• A modification of L(7)(i) still holds:

(L7) Blackwell’s theorem, part (ii)

If F is lattice with period d then

limn→∞ E
[
number of renewals at nd

]
= d

µ

• Note that the number of renewals at nd can be

written as dN(nd).
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Definition: h : [0,∞] → R is directly

Riemann integrable (dRi) if

lim
a→0

a

∞∑

n=1

sup
(n−1)a≤t≤na

h(t)

= lim
a→0

a

∞∑

n=1

inf
(n−1)a≤t≤na

h(t).

• i.e., if the limits of upper and lower bounds

exist and are equal, then h is dRi and the

integral is equal to this limit.

• h : [0, T ] → R is Riemann integrable (Ri) if

lim
a→0

a

T/a∑

n=1

sup
(n−1)a≤t≤na

h(t)

= lim
a→0

a

T/a∑

n=1

inf
(n−1)a≤t≤na

h(t).

and h : [0,∞] → R is Riemann integrable if

the limit
∫ ∞
0

h(t) dt = limT→∞
∫ T

0
h(t) dt exists.

• The dRi definition requires the ability to take a

limit (i.e., an infinite sum) inside the lima→0.

This infinite sum does not always exist for a

Riemann integrable function.
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• It is possible to find an h(t) which is Ri but not

dRi and for which the key renewal theorem fails.

(e.g., Feller, “An Introduction to Probability

Theory and its Applications, Vol. II”).

• If h(t) is dRi then h(t) is Ri, and the two

integrals are equal.

• If h(t) is Ri and h(t) ≥ 0 and h(t) is

non-increasing then it can be shown that h(t) is

dRi (this is sometimes an easy way to show dRi).
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Example (Alternating Renewal Process)

• Each interarrival time Xn consists of an

“on-time” Zn followed by an “off-time” Yn.

Suppose (Yn, Zn) are iid, but Yn and Zn may be

dependent.

• Suppose Yn and Zn have marginal distributions

G and H and Xn = Yn + Zn ∼ F .

• E.g., let Zn =





Xn if Xn ≤ x

x if Xn > x
.

Then the alternating process is “on” if

t − SN(t) ≤ x. The quantity A(t) = t − SN(t) is

the age of the renewal process at time t.

• E.g., let Yn =





Xn if Xn ≤ x

x if Xn > x
.

In this case, the process is “off” if

SN(t)+1 − t ≤ x. This alternating process is

appropriate to study the residual life

Y (t) = SN(t)+1 − t.
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(L8) Alternating Renewal Theorem

If E[Z1 + Y1] < ∞ and F is non-lattice, then

lim
t→∞

P
[
system is “on” at t

]
=

E[Z1]

E[Z1] + E[Y1]

Proof. The method is to condition on SN(t) and

apply the key renewal theorem. This is an

example of a powerful conditioning approach.
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Lemma:

dFSN(t)
(s) =





F̄ (t − s) dm(s) , s > 0

F̄ (t) + F̄ (t) dm(0) , s = 0

Proof of lemma.
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Proof of (L8) continued
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Example (Regenerative Process)

• A stochastic process {X(t), t ≥ 0} is

regenerative if there are random times

S1, S2, . . . at which the process restarts. This

means that {X(t + u), t ≥ 0} given Sn = u is

conditionally independent of {X(t), 0 ≤ t ≤ u}
and has the same distibution as {X(t), t ≥ 0}.

• A regenerative process defines a renewal process

with Xn=Sn−Sn−1 and N(t) = max{n : Sn ≤ t}.
Each interarrival interval for {N(t)} is called a

cycle of {X(t)}.

• An alternating renewal process is a regenerative

process:

An alternating renewal process X(t) takes values

“on” and “off”, and the times at which X(t)

switches from “off” to “on” are renewal times,

by the construction of the alternating renewal

process.
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(L9) Regenerative Process Theorem

If X(t) is non-lattice, taking values 0, 1, 2, . . ., and

the expected length of a cycle is finite then

lim
t→∞

P[X(t)= j] =
E[time in state j for one cycle]

E[time of a cycle]

Outline of Proof

• Example: If A(t) and Y (t) are the age and

residual life processes of a renewal process N(t),

how can (L9) be applied to find

limt→∞ P
[
Y (t) > x, A(t) > y

]
?
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Renewal Reward Processes

• At each renewal time Sn for a renewal process

{N(t)} we receive a reward Rn. We think of

the reward as accumulating over the time

interval [Sn−1, Sn], so we assume that Rn

depends on Xn but is independent of (Rm, Xm)

for m 6= n. In other words, (Rn, Xn) is an iid

sequence of vectors.

• The reward process is R(t) =
∑N(t)

n=1 Rn.

(L10) If E[R1] < ∞ and E[X1] < ∞ then

(i) lim
t→∞

R(t)

t
=

E[R1]

E[X1]
with probability 1

(ii) lim
t→∞

E[R(t)]

t
=

E[R1]

E[X1]

Outline of proof
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Example: A component is replaced if it reaches

the age T years, at a “planned replacement” cost

C1. If it fails earlier, it is replaced at a “failure

replacement” cost C2 > C1. Components have iid

lifetimes, with distribution F . Find the long run

cost per unit time.

Solution
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Delayed Renewal Processes

• All the limit results for renewal processes still

apply when the first arrival time has a different

distribution from subsequent interarrival times.

• This situation arises often because the time

t = 0 is the special time at which we start

observing a process.

Example: Suppose cars on the freeway pass an

observer with independent inter-arrival times, i.e.,

as a renewal process. Unless the observer starts

counting when a car has just passed, the time to

the first arrival will have a different distribution

to subsequent intarrivals [an exception to this is

when the interarrival times are memoryless!]

• Formally, let X1, X2, . . . be independent, with

X1 ∼ G, Xn ∼ F for n ≥ 2, and Sn =
∑n

i=1 Xi.

Then ND(t) = sup {n : Sn ≤ t} is a delayed

renewal process
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• Defining mD(t) = E[ND(t)] and µ = E[X2],

(LD1) limn→∞
Sn

n = µ w.p.1

(LD2) limt→∞ ND(t) = ∞ w.p.1

(LD3) limt→∞
ND(t)

t = 1
µ w.p.1

(LD4) limt→∞
mD(t)

t = 1
µ

(LD5)

lim
t→∞

P

[
ND(t) − t/µ

σ
√

t/µ3
< y

]
=

1√
2π

∫ y

−∞
e−x2/2

dx

(LD6) If F is not lattice and h is directly

Riemann integrable,

limt→∞
∫ t

0
h(t − x) dmD(x) = 1

µ

∫ ∞
0

h(t)dt

(LD7) (i) If F is not lattice,

limt→∞ mD(t + a) − mD(t) = a/µ

(ii) If F and G are lattice, period d,

limn→∞ E
[
number of renewals at nd

]
= d/µ
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Example: Suppose a coin lands H with

probability p. The coin is tossed until k

consecutive heads occur in a row. Show that the

expected number of tosses is
∑k

i=1(1/p)i.

Solution
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Solution continued
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