
Stats 620: Applied Probability

and Stochastic Models

1. Review of Probability

• An event E is a subset of a sample space S.

• The probability of E is written as P(E).

• Formally, P(E) may be undefined for certain

non-measurable events. Here, we assume P(E)

is defined for all events of interest.

Axioms of Probability

A1. 0 ≤ P(E) ≤ 1

A2. P(S) = 1

A3. If E1, E2, . . . are mutually exclusive, then

P (
⋃∞

i=1Ei ) =
∑∞

i=1 P(Ei)

Recall that E1, E2, . . . are mutually exclusive

or disjoint if EiEj = ∅ for i 6= j, where ∅ is the

null event or empty set.
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Basic Consequences of the Axioms

B1. P(∅) = 0 Proof:

B2. For E1, . . . , En mutually exclusive,

P (
⋃n

i=1Ei ) =
∑n

i=1 P(Ei) Proof:

B3. If E ⊂ F then P(E) ≤ P(F ). Proof:

B4. P(Ec) = 1− P(E) where Ec is the

complement of E. Proof:

B5. P (
⋃∞

i=1Ei ) ≤
∑∞

i=1 P(Ei) . This is Boole’s

inequality. The proof is an exercise.

2



Continuity of Probability

• Let {Fn, n ≥ 1} be an increasing sequence of

events, i.e., Fn ⊂ Fn+1 for all n.

• Define limn→∞ Fn =
⋃∞

n=1 Fn for all n.

• Writing E1 = F1 and En = FnF
c
n−1 for n > 1,

A3 can be re-written as

B6. P(limn→∞ Fn) = limn→∞ P(Fn)

• {Fn} is decreasing if Fn ⊃ Fn+1 for all n.

• In this case, limn→∞ Fn =
⋂∞

n=1 Fn. Since {F c
n}

is increasing, and limn→∞ F c
n = (limn→∞ Fn)

c

(why?), B6 also applies to decreasing sequences.
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Why are we interested in limn→∞?

• For small stochastic systems, one can calculate

probabilities exactly.

• Large systems sometimes display simple

limiting behavior despite the complexities of the

full system.

Example: Statistical mechanics

• Solving laws of motion for as few as three

interacting particles can be fiendishly difficult.

• The combined properties of 1023 particles are

relatively tractable.
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Example (Borel-Cantelli Lemma)

For any sequence {En, n ≥ 1} of events, if∑∞
n=1 P(En) <∞ then P

(⋂∞
n=1

⋃∞
i=nEi

)
= 0.

Note:
⋂∞

n=1

⋃∞
i=nEi is the event that an infinite

number of the Ei occur. Why?

Proof
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Independence

• E1 and E2 are independent if

P(E1E2) = P(E1)P(E2).

• {Ei, i = 1, . . . , n} are independent if any

sequence 1 ≤ i1 < . . . < ik ≤ n has

P
(⋂k

j=1Eij

)
=

∏k
j=1 P(Eij ).

• {Ei, i ≥ 1} are independent if any finite

collection are independent.

Example (partial converse to Borel-Cantelli)

If {Ei, i ≥ 1} are independent, and∑∞
i=1 P(Ei) = ∞, then

P(infinite number of Ei occur) = 1.

Proof
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Proof continued
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Random Variables

• A random variable X is a function from S to

the real numbers, X : S → R.

• X ∈ A denotes the event {s : X(s) ∈ A}.

• The distribution function (or cumulative

distribution function or c.d.f.) of X is

FX(x) = P(X ≤ x), so FX : R → [0, 1].

• RVs get capital letters, e.g. X,Y, Z, and their

values get lower case, e.g. x, y, z.

• We write FX(x) = 1− FX(x) = P(X > x).

• For jointly defined RVs, e.g. X and Y ,

FXY (x, y) = P(X ≤ x, Y ≤ y). Then,

FX(x) = limy→∞ FXY (x, y). Why?
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Continuous Random Variables

• X is continuous if there is a probability

density function (p.d.f.) fX(x) such that

P(X ∈ A) =
∫
A
fX(x) dx.

• Since FX(x) =
∫ x

−∞ fX(z) dz, we have

fX(x) = d
dxFX(x). Why?

• X and Y are jointly continuous if they have

a joint p.d.f. fXY (x, y) such that

P(X ∈ A, Y ∈ B) =
∫
A

∫
B
fXY (x, y) dy dx.

Discrete Random Variables

• X is discrete if it has a finite or countable set

of possible values x1, x2, . . . in which case the

distribution of X is determined by the p.m.f.

(probability mass function)

pX(x) = P(X=x).

• Similarly, pXY (x, y) = P(X=x, Y= y).
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Independence of Random Variables

• Joint RVs X1, . . . , Xn are independent if the

events {a1 ≤ X1 ≤ b1}, . . . , {an ≤ Xn ≤ bn} are

independent for all choices a1, . . . , an and

b1, . . . , bn.

Equivalently

FX1...Xn
(x1, . . . , xn) =

∏n
k=1 FXk

(xk)

Equivalently (For Continuous Random Variables)

fX1...Xn
(x1, . . . , xn) =

∏n
k=1 fXk

(xk)

Equivalently (For Discrete Random Variables)

pX1...Xn
(x1, . . . , xn) =

∏n
k=1 pXk

(xk)

• Checking these equivalences is an exercise!

• X1, . . . , Xn are independent and identically

distributed (iid) copies of X if they are

independent and have the same marginal

distribution as X, meaning FXi
(x) = FX(x).
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Expectation

• The expected value or mean of X is

E[X] =
∫∞
−∞ x dFX(x) [definition]

=
∫∞
−∞ xfX(x) dx [continuous RVs]

=
∑

x xpX(x) [discrete RVs]

• E[h(X)] =
∫∞
−∞ h(x) dFX(x)

• Expectation is linear, i.e.

E[
∑n

i=1 λiXi] =
∑n

i=1 λiE[Xi]

• If X and Y are independent,

E[XY ] = E[X]E[Y ].

The converse is not generally true.

Example: indicator random variables

For an event A, the indicator random variable

IA is defined as

IA =




1 if A occurs

0 else

Then, E[IA] = 1× P(A) + 0× P(Ac) = P(A).
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Variance and Covariance

• Var(X) = E
[
(X − E[X])2

]
.

• Cov(X,Y ) = E
[(
X − E[X]

) (
Y − E[Y ]

)]
.

• Two useful identities:

Var(X) = E[X2]−
(
E[X]

)2

Cov(X,Y ) = E[XY ]− E[X]E[Y ]

To check, expand & use linearity (exercise).

• If Cov(X,Y ) = 0, X and Y are uncorrelated

(independence ⇒ uncorrelated)

• Covariance is bilinear:

Cov
(∑m

i=1 λiXi,
∑n

j=1 µjYj

)

=
∑m

i=1

∑n
j=1 λiµjCov(Xi, Yj)

• Noting Var(X) = Cov(X,X) and

Cov(X,Y ) = Cov(Y,X), this implies

Var
(∑m

i=1Xi

)
=

∑m
i=1 Var(Xi)

+ 2
∑

i<j Cov(Xi, Xj)
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Integral Transforms

• If X has c.d.f. F (x) then define

ψ(t) = E[etX ] =
∫
etx dF (x)

moment generating

function (MGF)

φ(t) = E[eitX ] =
∫
eitx dF (x) characteristic function

F̃ (t) = E[e−tX ] =
∫
e−tx dF (x) Laplace transform

• uniqueness: all three transforms uniquely

determine F (x) when they exist (we use this

result without proof).

• transforms of sums of independent RVs:

Let X and Y be independent. Then,

ψX+Y (t) = E[et(X+Y )] = E[etX ]E[etY ]

= ψX(t)ψY (t)

Where is independence used? Similarly,

φX+Y (t) = φX(t)φY (t), F̃X+Y (t) = F̃X(t) F̃Y (t).

• The MGF is useful for finding moments. The

characteristic function always exists. Laplace

transforms are convenient for non-negative RVs.
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Some Standard Discrete Distributions

• X ∼ Binomial (n, p) if X counts the # of

successes in n independent trials each with

chance p of success.

• X ∼ Poisson (λ) if X counts the # of

occurrences of rare, independent events (e.g.

radioactive decay measured by a Geiger

counter). This is a limit of Binomial (n, p) as

n→ ∞ and np→ λ.

• X ∼ Geometric (p) if X counts the # of trials

until the first success, in an infinite sequence of

independent trials each with chance p of success.

• X ∼ Neg Bin (r, p), the negative binomial

distribution, if X counts the # of trials until r

successes have occurred.

• The p.m.f., mean, variance and moment

generating functions are on p16 of Ross. They

may be used without proof in this course.
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Example: Find the MGF of the Binomial (n, p)

distribution, and hence find its mean & variance.
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Some Standard Continuous Distributions

• X ∼ Uniform [a, b], also written X ∼ U [a, b], if

fX(x) =





1/(b− a) a ≤ x ≤ b

0 else
.

• X ∼ Exponential (λ) if fX(x) = λe−λx for

x ≥ 0 and fX(x) = 0 for x < 0.

The exponential is the only continuous

distribution with the memoryless property:

P(X>a+ b |X>a) = P(X > b) for a > 0, b > 0.

• X ∼ Gamma (n, λ) if

fX(x) = λnxn−1e−λx/(n− 1)! for x ≥ 0.

If n is an integer, the Gamma distribution

corresponds to the sum of n iid Exponential (λ)

random variables.

• X ∼ Normal (µ, σ2), or X ∼ N(µ, σ2), if

fX(x) = 1√
2πσ2

exp
{

−(x−µ)2

2σ2

}
.

• Z is standard normal if Z ∼ N(0, 1). We can

write X = µ+ σZ.
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• X ∼ Beta (a, b) if fX(x) = cxa−1(1− x)b−1 for

0 < x < 1 where c = Γ(a+ b)/Γ(a)Γ(b) and Γ(a)

is the gamma function (if a is an integer,

Γ(a) = (a− 1)!).

Example If U1, . . . , Un ∼ iid U [0, 1], define

U(1) < U(2) < . . . < U(n) to be the order

statistics, placing U1, . . . , Un in increasing order.

Show that U(k) ∼ Beta (k, n− k + 1).

Solution
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Solution continued
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Conditional Probability and Expectation

• For events E and F , P[E |F ] = P[EF ]
/
P(F )

• The conditional c.d.f. of X given Y= y is

FX|Y (x | y) = P[X ≤ x |Y= y] if P(Y= y) > 0.

• The conditional expectation of X given

Y= y is E[X |Y= y] =
∫
x dFX|Y (x | y).

• If X and Y are jointly continuous, the

conditional density of X given Y= y is

fX|Y (x | y) =
fXY (x,y)
f
Y
(y) . Then,

FX|Y (x | y) =
∫ x

−∞ fX|Y (z | y) dz.

• Although we are conditioning on an event of

probability zero, conditional densities behave like

conditional probabilities.

• E[X |Y= y] =
∫
xfX|Y (x | y) dx
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Conditional Expectation as a Random Variable

• E[X |Y ] is the RV which takes the value

E[X |Y= y] when Y= y.

• E
(
E[X |Y ]

)
= E[X]

Proof: (For X and Y jointly continuous)

Other properties with similar proofs:

• E[X h(Y ) |Y ] = h(Y )E[X |Y ] for any h(·)

• E
(
E[X |Y, Z] |Y

)
= E[X |Y ]
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Conditional Probability of an Event

Given a Random Variable

• All properties of conditional expectation apply

also to conditional probabilities, since (by

definition)

P[A |Y= y] = E[IA |Y= y]

so we define

P[A |Y ] = E[IA |Y ]

and we get

P[A] = E
(
P[A |Y ]

)

Why?

• Note that this can also be written as

P[A] =
∫
P[A |Y= y] dFY (y)
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Example: Show that h(Y ) and X − E[X |Y ] are

uncorrelated, for any function h(·).

Solution

Example (Problem Solving Via Conditioning)

A gambler wins or loses $1 with equal probability.

She starts with $i and plays repeatedly until

reaching k or going broke. Find the expected

number of times she plays.

Solution
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Solution continued
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Example: (least square prediction). If Y is used

to predict X, we may choose the predictor h(Y )

to minimize E
[
(X − h(Y ))2

]
. Show that this

least squares predictor is h(Y ) = E[X |Y ].

Solution
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Two Limit Theorems (without proofs)

Strong Law of Large Numbers: If X1, X2, . . .

are independent & identically distributed (iid)

with E[X1] = µ, then

P
[
limn→∞

1
n

∑n
i=1Xi = µ

]
= 1.

Central Limit Theorem: If X1, X2, . . . are iid

with E[X1] = µ and Var[X1] = σ2 then

lim
n→∞

P

[√
n
σ

(
1
n

n∑

i=1

Xi−µ
)
≤ a

]
=

∫ a

−∞
1√
2π
e−x2/2 dx.

• Note that
∫ a

−∞
1√
2π
e−x2/2 dx = P[Z ≤ a] where

Z ∼ N [0, 1].

• The CLT can be checked experimentally (e.g.,

for a finite n one can simulate on a computer to

see how closely the rescaled average matches the

Normal distribution).
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Stochastic Processes

• A stochastic process is a collection of random

variables {X(t)} = {X(t), t ∈ T} with an index

set T .

• If T is countable, {X(t)} is a discrete-time

process. If T is an interval of R, then {X(t)} is a

continuous-time process.

• The sample space for {X(t)} is typically the set

of all possible trajectories {x(t), t ∈ T}, termed

sample paths.

• A continuous-time process may have continuous

or discontinuous sample paths.

• {X(t)} is stationary if X(t1), X(t2), . . . , X(tk)

has the same distribution as

X(t1 + s), . . . , X(tk + s) for all choices of

t1, . . . , tk and s. This means joint distributions

are invariant to time shifts.
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Simulating stochastic processes

• A process with continuous sample paths:

np=1000

t=seq(from=0,to=1,length=np)

X=cumsum(rnorm(np,mean=0,

sd=sqrt(1/np)))

plot(t,X,type="l")

• Discontinuous sample paths: a jump process

Note: R code

is not formally

part of this

course.

lambda=5

np=lambda

S=cumsum(rexp(np,rate=lambda))

plot(S,1:np,xlim=c(0,1),

xlab="t",ylab="X",

ylim=c(0,np),pch=19)

points(S,0:(np-1),pch=1)

matlines(rbind(

c(0,S),c(S,1)-0.015),

rbind(0:np,0:np),

lty="solid",

col="black")
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• {X(t)} has stationary increments if the

distribution of X(t+ s)−X(t) doesn’t depend

on t.

• {X(t)}, has independent increments if

X(t2)−X(t1), X(t3)−X(t2), . . . ,X(tk)−X(tk−1)

are independent for all t1 < t2 < . . . < tk.

• {N(t)} is a counting process if:

(i)N(t) takes values in {0, 1, 2, 3, . . .}, the

non-negative integers.

(ii)N(t) is increasing, i.e. for s < t, N(s) ≤ N(t).

• N(t)−N(s) can be interpreted as counting the

number of events arising between times s and t.

• Remarkably, there is essentially only one

counting process with independent, stationary

increments—the Poisson process. This process is

widely used to model phenomena in natural

sciences, engineering and social sciences. It is

also a tool for building more complex models.
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