
Applied Probability Qualifying Review Exam Questions
May, 2010

Time allowed: approximately 1/2 hr per question

1. Let {Xn, n ≥ 0} be a Markov chain taking values in {1, 2, . . . ,m} and having one-step
transition probabilities Pij = P[Xn = j |Xn−1 = i]. Let A be a subset of the statespace,
A ⊂ {1, 2, . . . ,m}, and define N = min{n : Xn ∈ A}. Find a set of equations whose solution
gives the following:

(i) The mean time until {Xn} hits A if the chain is started at i, i.e., E[N |X0 = i].

(ii) The probability that {Xn} first hits A at j, i.e., P[XN = j |X0 = i].

Solution: Let mi = E[N |X0 = i]. Conditioning on X1 gives

mi = 1 +
∑
j 6∈A

Pijmj .

Also, letting φij = P[XN = j |X0 = i], conditioning on X1 gives

φij = Pij +
∑
k 6∈A

Pikφkj .

2. This question considers a model for the fraction Xn of individuals in the nth generation of a
certain population having a particular genetic trait (say, a gene for male-pattern baldness).
Thinking of the population as being large, we suppose Xn is a continuous-valued random
variable taking values in [0, 1]. In addition, we suppose that {Xn, n ≥ 0} has the Markov
property. Further, we suppose that the genetic trait is neutral, meaning that it neither helps
nor harms the individual, and so E[Xn |Xn−1] = Xn−1. To allow for chance variation in
transmission of the trait between generations, we suppose that Var[Xn |Xn−1] = cXn−1(1 −
Xn−1) where c is some unknown constant. This can be thought of as generalizing the binomial
distribution. Finally, suppose that X0 = p for some 0 < p < 1.

(i) Prove that Xn converges in some specified sense to either zero or one, i.e., in this model
the trait will eventually die out or spread through the entire population.

(ii) Find the probability that the trait eventually spreads through the entire population.

(iii) Use a martingale stopping argument to find a lower bound on the probability that the
fraction of the population with the trait never exceeds q for q > p.

Solution: Xn is clearly a martingale. Since it is also non-negative, limn→∞Xn exists almost
surely. But by construction sample paths cannot converge to any value in (0, 1), so the limit
points must be either 0 or 1. It follows that

P[ lim
n→∞

Xn = 1] = E[ lim
n→∞

Xn] = lim
n→∞

E[Xn] = p,

with the interchange of limit and expectation justified for uniformly bounded random vari-
ables.
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Now consider the stopping time N = min{n : Xn ≤ ε or Xn ≥ q}. Let A = {XN ≥ q} and
B = {XN ≤ ε}. The martingale stopping theorem applies as {Xn} is bounded, and so

p = E[XN |A]P[A] + E[XN |B]P[B] (1)
≥ qP[A]. (2)

Thus, P[A] ≤ p/q. Taking ε → 0, we find P[supk Xk ≥ q] ≤ p/q and so P[supk Xk < q] ≥
1− p/q.

3. Let N(t) be a counting process describing customers arriving at a queue, with Wn being the
time spent in the queue by the nth customer and X(t) being the number of customers in
the queue at time t. Let {Sn, n ≥ 1} be the sequence of times at which X(t) jumps from
zero to one. Suppose that these are regeneration times for the system, i.e., {X(t + u), t ≥ 0}
is conditionally independent of {X(s), 0 ≤ s ≤ u} given {Sn = u} and has a conditional
distribution which does not depend on n. In other words, the system resets when the queue
is empty. Suppose that E[Sn − Sn−1] = µ < ∞. Beyond these assumptions, we allow
consideration of an arbitrary queueing structure. Show that

L = λW

where L = lim
t→∞

1
t

∫ t

0
X(u) du, λ = lim

t→∞
N(t)/t, and W = lim

n→∞

1
n

n∑
k=1

Wk.

Solution: This is a delayed regerative process, as t = 0 is not a regeneration time. However,
we will modify it by placing a regeneration time at t = 0; this is notationally convenient and
has no consequences for the limit results. Let N be the number of customers arriving (and
therefore also exiting) the queue in the interval [0, S1). Via the renewal-reward theorem, the
limits L, λ and W exist and are given by

L = E
(∫ S1

0
X(u) du

)/
E[S1], λ = E[N ]/E[S1], W = E

(
N∑

n=1

Wn

)/
E[N ]. (3)

Defining In(t) =
{

1 if the nth customer is in the system at time t
0 else

,

we have Wn =
∫ S1

0 In(t) dt and X(t) =
∑N

n=1 In(t). Therefore,

N∑
n=1

Wn(t) =
N∑

n=1

∫ S1

0
In(t) dt =

∫ S1

0

N∑
n=1

In(t) dt =
∫ S1

0
X(t) dt.

Now it follows from (3) that

L = E

(
N∑

n=1

Wn(t)

)/
E[S1]

=
E[N ]
E[S1]

×
E
(∑N

n=1 Wn(t)
)

E[N ]
= λW.
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4. Suppose that many gas particles carry out independent random walks in a container. Particles
which hit the walls of the container become stuck, and we are interested in the distribution
of the remaining freely-moving particles. This leads us to analyze the following model.

Let {X(t), t ≥ 0} be a standard Brownian motion, with X(0) = 0. Define At = {−1 < X(s) <
1 for all 0 ≤ s ≤ t}, the event that X(s) has remained inside the unit disc for 0 ≤ s ≤ t. Find
the limiting density of X(t) conditional on At as t →∞.

Hint: it may be helpful to set up and solve an appropriate differential equation. Your argu-
ment does not need to be fully rigorous, but you should comment on unchecked assumptions.

Solution: We look for a density function f(x) for 0 ≤ x ≤ 1 such that if Y (0) ∼ f and
Y (t) − Y (0) is a standard Brownian motion independent of Y (0) then Y (t) conditional on
AY

t = {−1 < Y (s) < 1 for all 0 ≤ s ≤ t} has distribution f for all t. Supposing that the
theory for countable-state Markov chains applies in this uncountable-state setting, the density
of X(t) conditional on At should converge to this unique stationary distribution.

Y (δ) has density f(x)− δ d2f
dx2 + o(δ). Thus, Y (δ) given AY

δ has density(
f(x)− δ

d2f

dx2
+ o(δ)

)(
1− cδ + o(δ)

)−1
(4)

for −1 < x < 1, where c = d
dt(1− P[AY

t ]), assuming this derivative exists. For the numerator
of (4) we have not directly considered trajectories which leave [−1, 1] and return to a neigh-
borhood of x since these have probability o(δ). By hypothesis, (4) equals f(x) and taking
δ → 0 then gives

d2f

dx2
= −cf, (5)

with boundary conditions f(−1) = f(1) = 0. The probability density solving this is f(x) =
π
4 cos(πx/2).
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