
Applied Probability Qualifying Review Exam Questions
May, 2010

Time allowed: approximately 1/2 hr per question

1. A village of N +1 people suffers an epidemic of an infectious disease. Let X(t) be the number
of ill people at time t, with one initially infected individual so that X(0) = 1. Suppose X(t)
follows a continuous time Markov chain with transitions from n to n + 1 occurring at rate
λn(N + 1 − n). Let TN be the time at which everyone in the village has become sick. Find
an expression for E[TN ] and show that E[TN ] is a decreasing function of N .

Solution: The expected time taken for X(t) to jump from n to n + 1 is [λn(N + 1 − n)]−1

and so
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To show this is decreasing in N , set SN =
∑N

n=1
1
n and write

λ

2
(
E[TN ]− E[TN+1]

)
=

SN

N + 1
− SN+1

N + 2

=
(N + 2)SN − (N + 1)[SN + 1/(N + 1)]

(N + 1)(N + 2)

=
SN − 1

(N + 1)(N + 2)
≥ 0 for N ≥ 1.

2. We investigate a simple model for the spatial growth of a skin cancer. At each time t, there
is a skin cell located at each point (m,n) of the integer lattice Z2. Each cell’s cancer status is
either benign (B) or malignant (M). Each cell lives for an exponentially distributed amount
of time, with rate λB or λM depending on its status, at which point it divides into two
daugher cells each with the same cancer status as the parent. One daughter cell remains at
the point of division and the other replaces one of the four neighboring cells, each chosen
with probability 1/4. The replaced cell leaves the system. Initially, there is a single M -cell
at time t = 0.

(a) Let X(t) be the number of M -cells at time t. Let Xn be the embedded discrete-time
process consisting of the sequence of values taken by X(t). Is X(t) a Markov chain? Argue
that Xn is a Markov chain and establish its transition probabilities.

(b) Find the chance that the cancer dies out as a function of the ‘carcinogenic advantage’
κ = λM/λB, supposing that κ > 1.

Solution:

(a) Note that X(t) changes only when a cell divides and replaces a neighboring cell with a
different cancer status. Let N(t) be the number of (unordered) pairs of neighboring locations
with different cancer status at time t. Then, X(t) increases by 1 at rate λmN(t)/4 and X(t)
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decreases by 1 at rate λbN(t)/4. Since N(t) is not part of the state of the process X(t) there
is no reason to believe that X(t) is a Markov chain.

However, the probability that X(t) increases by 1 at its next transition is

(λmN(t)/4)/(λbN(t)/4 + λmN(t)/4) = λm/(λb + λm),

which does not depend on the state of the process. The other possibility is that X(t) decreases
by 1 at its next transition, with probability λb/(λb + λm). Since this is true regardless of the
history of X(t), we find that Xn is a Markov chain with these transition probabilities.

(b) Let pn = P[Cancer extinct from n] and π = λm/(λb+λm) we condition to get the recursion

pn = πpn+1 + (1− π)pn−1.

This difference equation has general solution pn = A + Bκ−n. Since p0 = 1 and p∞ = 0, we
infer pn = κ−n and so p1 = κ−1.

3. A company has a quantity Y (t) of a certain product at time t. Whenever the supply of this
produce is entirely depleted, an order of size q is placed from an outside source. Each order
has a cost C +Dqα for α ≥ 1. The order is supposed to arrive instantaneously, so Y (t) jumps
from 0 to q. Between orders, the inventory behaves like a Brownian motion with drift µ < 0
and infinitesimal variance σ2. Find the value of q that minimizes the long run expected cost
per unit time.

Solution:

Let X(t) be a Brownian motion with drift µ < 0 and infinitesimal variance σ2 having X(0) =
q. Z(t) = X(t)− µt is a martingale. T = inf{t : X(t) = 0} is a stopping time. We apply the
Martingale stopping theorem, checking that E[T ] < ∞ and E[|Z(t+s)−Z(s)|] is bounded for
each s. In the context of the course, we are assuming that the stopping theorem we proved
for discrete-time martingales extends to the continuous-time case. Then, E[Z(T )] = q and so
E[T ] = −q/µ.

The cost of the system is a renewal/reward process and so the long run cost per unit time is

(−µ/q)(C +Dqα) which is minimized by choosing q =
[

C
D(α−1)

]1/α
. This does not depend on

µ or σ.

4. Let N1(t) be a Poisson process with rate λ. Let N2(t) be a non-lattice renewal process,
independent of N1(t), whose interarrival times have finite mean. Define N(t) = N1(t)+N2(t)
and suppose that N(t) is a renewal process. Write F for the interarrival distribution of
N(t), with F denoting the complementary c.d.f., µ denoting the mean and Sn denoting the
corresponding sequence of arrival times.

(a) Let Y (t) be the residual life process for N(t), i.e. Y (t) = SN(t)+1 − t . Show that

lim
t→∞

P(Y (t) ≤ x) =
∫ x

0

1
µ

F (y) dy.

(b) Let the interarrival times for N2(t) have distribution F2, complementary c.d.f. F 2, and
mean µ2. Show that ∫ ∞

x

1
µ

F (y) dy = e−λx

∫ ∞

x

1
µ2

F 2(y) dy.
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(c) Show that F 2(x) = exp{−cx} for a value of c to be determined.

[Note: it follows fairly immediately from this calculation that N(t) is a renewal process if and
only if N2(t) is a Poisson process.]

Solution:

(a) Conditioning on SN(t) gives

P(Y (t) ≤ x) =
∫ t

t−x
dFSN(t)

=
∫ t

t−x
F (t− s) dm(s).

Applying the key renewal theorem (check the conditions!) gives the required expression.

(b) Note that {Y (t) > x} = {Y1(t) > x} ∩ {Y2(t) > x} and so

P(Y (t) > x) = e−λxP(Y2(t) > x).

Now apply part (a) to both sides.

(c) Considering the first arrival time, we get F (x) = e−λxF 2(x). Applying this to the result
of part(ii) gives ∫ ∞

x

1
µ

e−λyF 2(y) dy =
∫ ∞

x

1
µ2

e−λxF 2(y) dy.

Differentiation gives

1
µ

e−λxF 2(x) = λe−λx

∫ ∞

x

1
µ2

F 2(y) dy +
e−λx

µ
F 2(x).

This simplifies to

F 2(x) =
λµ

µ2 − µ

∫ ∞

x
F 2(s)

which has solution F 2(x) = e−cx for c = λµ
/
(µ2 − µ).
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