
Applied Probability Qualifying Review Exam Questions
Tuesday May 29, 2012

9a.m. to 1p.m.

1. The number of individuals in a population maintained by immigration and depleted by indi-
vidual deaths and collective disasters is modeled by a continuous time Markov chain, X(t).
New individuals enter the population at rate λ. Each individual in the population dies, in-
dependently, at rate µ. In addition, at rate δ the whole population is eliminated. Thus, the
nonzero transition rates are

qi,i+1 = λ

qi,i−1 = µi for i ≥ 2
qi,0 = δ for i ≥ 2
q1,0 = µ + δ.

(a) Is X(t) reversible?

(b) Find the limiting mean of X(t) as t increases.

[Hint: direct computation via evaluating the stationary distribution is both tricky and unnec-
essary. Two easier ways to proceed are (i) set up and solve a differential equation satisfied by
E[X(t)], or (ii) consider the marginal distribution of the time that each immigrant remains
in the population.]

(c) Show that X(t) has a unique stationary distribution (you do not need to obtain it explic-
itly).

Solution: (a) No. For example, the rate of going directly from i to zero is positive for
all i, whereas the rate of going directly from zero to i is zero for i > 1. Formally, let
π = (π0, π1, . . . ) be a stationary distribution (supposing it exists). Since the state space
consists of a single communicating class, one must have πi > 0 for all i. Then, reversibility
implies that π0q0,2 = π2q2,0 which is a contradiction.

(b) [method (i)] From the transition probabilities, we get

E[X(t + h) |X(t)] = X(t) + λh− (µ + δ)X(t)h + o(h).

Assuming that the expectation of the remainder is o(h), one has

d

dt
E[X(t)] = λ− (µ + δ)E[X(t)].

As t →∞ this converges to the fixed point at

lim
t→∞

E[X(t)] =
λ

µ + δ
.

[method (ii)] Each immigrant has a marginal death rate of µ + δ, and thus an expected time
(µ + δ)−1 in the population. For large t, the expected number of immigrant arriving by time
t is λt. Therefore, the limiting mean number of immigrants present in the interval [0, t] is
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λ/(µ + δ)−1. This is a non-lattice regenerative process, and so (by the regenerative process
limit theorem) the limiting time average is equal to the limiting expectation.

(c) As we have already noted, the state space forms a single communicating class. The chain
is acyclic, and it therefore has a unique stationary distribution if it is positive recurrent.
The state 0 is clearly positive recurrent, and so the whole communicating class is positive
recurrent.

2. For a general renewal process N(t), we study the second moment function V (t) = E[N(t)2].
We use standard renewal theory notation, so that m(t) = E[N(t)] is the renewal function,
and Xn is the nth arrival time with cumulative distribution function Fn.

(a) Show that V (t) =
∑∞

n=1(2n− 1)P{N(t) ≥ n}.
(b) Hence, or otherwise, show that V (t) = m(t) + 2

∫ t
0 m(t− s) dm(s).

[Hint: there are at least two ways to approach this: (i) by direct calculation, using the identity
m(t) =

∑∞
n=1 Fn(t) together with part (a); (ii) via Laplace transforms.]

(c) Check that the formula in (b) gives the correct result when N(t) is a Poisson process.

Solution: Now, for the left hand side,

V (t) =
∑

n

(2n− 1)P{N(t) ≥ n}

=
∑

n

(2n− 1)P{Sn ≤ t}

=
∑

n

(2n− 1)Fn(t) (1)

(b) Use the identity

m(t) =
∞∑

n=1

Fn(t) (2)

to calculate ∫ t

0
m(t− s) dm(s) =

∫ t

0

∞∑
m=1

Fm(t− s)
∞∑

n=1

dFn(s)

=
∞∑

m=1

∞∑
n=1

∫ t

0
Fm(t− s)dFn(s)

=
∞∑

m=1

∞∑
n=1

Fm+n(t)

=
∞∑

k=1

(k − 1)Fk(t). (3)

Putting together (3) and (1) gives the solution to (b). For a Poisson process with rate λ, we
know that m(t) = λt and so (b) gives

V (t) = λt + 2λ2

∫ t

0
(t− s) ds = λt + λ2t2,

which checks (c).
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3. Let {Yn, n = 0, 1, . . . } be a martingale with E[Yn] = 0 and E[Y 2
n ] < ∞ for all n. Show that,

for x > 0,

P
{

max
1≤k≤n

Yk > x

}
≤ E[Y 2

n ]
E[Y 2

n ] + x2
.

Solution: For x > 0 and c > 0, note that

P
{

max
1≤k≤n

Yk > x

}
≤ P

{
max

1≤k≤n
(Yk + c)2 > (x + c)2

}
.

Since (Yk + c)2 is a convex function of Yk, it defines a submartingale. Applying Kolmogorov’s
submartingale inequality, we get

P
{

max
1≤k≤n

(Yk + c)2 > (x + c)2
}
≤ E

[
(Yn + c)2

(x + c)2

]
.

Now, putting c = E[Y 2
n ]/x gives the required result.

4. Let X(t) and Y (t) be two independent Brownian motions, both having infinitesimal vari-
ance parameter σ2. Thinking of

(
X(t), Y (t)

)
as Brownian motion on the plane, we inves-

tigate the transformation into polar coordinates. Thus, we define X(t) = R(t) cos Θ(t) and
Y (t) = R(t) sinΘ(t), which can also be written as R(t) =

√
X(t)2 + Y (t)2 and Θ(t) =

arctan
(
Y (t)/X(t)

)
.

(a) Compute the infinitesimal conditional mean and variance given by

(i) lim
h→0

1
h

E[R(t + h)−R(t) |R(t),Θ(t)]; (ii) lim
h→0

1
h

Var[R(t + h)−R(t) |R(t),Θ(t)].

This essentially amounts to a bivariate application of Ito’s formula. Since only the univariate
case was covered in class, you should not just state and use a multivariate result. You should
carry out a Taylor series approximation, discussing which terms become negligible in the
limit as h → 0 but without supplying a formal proof of this. It may be helpful to notice that
conditioning on

(
R(t),Θ(t)

)
is equivalent to conditioning on

(
X(t), Y (t)

)
.

(b) Is the vector stochastic process {
(
R(t),Θ(t)

)
, t ≥ 0} a diffusion process? Which, if any,

of the scalar processes {R(t), t ≥ 0} and {Θ(t), t ≥ 0} are diffusion processes? Explain.

Solution: (a) Write a Taylor series expansion

R(t + h) = R(t) +
∂R

∂X
[X(t + h)−X(t)] +

∂R

∂Y
[Y (t + h)− Y (t)] + (1/2)

∂2R

∂X2
[X(t + h)−X(t)]2

+(1/2)
∂2R

∂Y 2
[Y (t + h)− Y (t)]2 +

∂2R

∂X∂Y
[X(t + h)−X(t)][Y (t + h)− Y (t)] + A (4)

Assume that E[A] = o(h), noting that Ito’s formula for univariate diffusions tells us that this
is true in the univariate case. Now compute

∂R

∂X
=

X

R
;

∂R

∂Y
=

Y

R
;

∂2R

∂X2
=

1
R
− X2

R3
;

∂2R

∂Y 2
=

1
R
− Y 2

R3
;

∂2R

∂X∂Y
= −XY

R3
.
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Taking expectations of (4) gives

E[R(t + h)−R(t) |X(t), Y (t)] =
1
2

(
1

R(t)
− X(t)2

R(t)3

)
σ2h +

1
2

(
1

R(t)
− Y (t)2

R(t)3

)
σ2h + o(h),

and so

lim
h→0

1
h

E[R(t + h)−R(t) |R(t),Θ(t)] =
(

2
R(t)

− X(t)2 + Y (t)2

R(t)3

)
σ2 =

σ2

2R(t)
.

For the infinitesimal variance, we assume that the variance of the remainder from the first
order Taylor series expansion of (4) is o(h), to obtain

Var[R(t + h)−R(t) |X(t), Y (t)] =
(

X(t)2

R(t)2
+

Y (t)2

R(t)2

)
σ2h + o(h) = σ2h + o(h).

(b) {
(
R(t),Θ(t)

)
, t ≥ 0} is a diffusion process since it is a continuous and invertible function

of a diffusion process.

{R(t), t ≥ 0} has continuous sample paths, and from part (a) we discovered that it has the
Markov property, since the infinitesimal mean and variance happen to depend only on R(t)
and not on Θ(t).

{Θ(t), t ≥ 0} has continuous sample paths, but it does not have the Markov property. Heuris-
tically, this can be reasoned by noting that stochastic fluctuations in Θ(t) will be much greater
when

(
X(t), Y (t)

)
is close to the origin. Thus a recent history of rapid fluctuations will pre-

dict further intense fluctuations in the near future. This contradicts the Markov property.
Formally, one can confirm this by carrying out the corresponding computation of infinitesimal
moments in (a) for Θ(t).
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