
Probability Qualifying Review Exam
Friday May 24, 2013

9a.m. to 1p.m.

Instructions:

• You are allowed only pen (or pencil) and paper. Calculators, cell phones, and any other
electronic device should not be brought into the exam room.

• You may answer up to seven of the eight questions. Each question carries equal credit. If you
submit solutions to all eight questions then only the first seven will be graded.

• Questions 1-4 cover material from Stat 620. Questions 5-8 cover material from Stat 621.
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1. This question studies a random variable with a random probability mass function, constructed
as follows. Let Z1, . . . , ZN be independent, identically distributed, positive random variables.
Let

Wn =
Zn∑N

m=1 Zm
for n = 1, . . . N.

Let x1, . . . , xN be a sequence of real numbers. Let X be a random variable defined such that
P(X = xn |W1, . . . ,WN ) = Wn.

(a) Find E[Wn] and E[Wn |Wm] for m 6= n. Hint: you can appeal to symmetry to argue that
the answer should not depend on n or m.

Solution: Note that
∑N

n=1Wn = 1, so
∑N

n=1 E[Wn] = 1. By symmetry, we get E[Wn] = 1/N .

Similarly, E[
∑

n6=mWn |Wm] = 1−Wm. By symmetry we have (N−1)E[Wn |Wm] = 1−Wm,
so E[Wn |Wm] = (1−Wm)/(N − 1).

(b) Let Var(Wn) = α. Find Cov(Wm,Wn) in terms of α, for m 6= n.

Solution:

E[WmWn] = E
[
WmE[Wn |Wm]

]
= E[Wm(1−Wm)/(N − 1)]

=
1

N(N − 1)
− Var(Wm) + E[Wm]2

N − 1

=
1
N2
− α

N − 1

Therefore, Cov(Wm,Wn) = E[WmWn] = E[Wm]E[Wn] = −α/(N − 1). Another way to get
this is to note that Var

(∑N
n=1Wn

)
= 0 and then, by symmetry, we get NVar(Wn) +N(N −

1)Cov(Wm,Wn) = 0.

(c) Find an expression for E[Var(X |W1, . . . ,WN )] in terms of x1, . . . , xN and α. Check
whether your expression behaves appropriately in two situations; (i) when α = 0, and (ii)
when x1, x2, . . . , xN is replaced by x1 + c, x2 + c, . . . , xN + c for some constant c.
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Solution:

Var(X |W1, . . . ,WN ) =
N∑
n=1

x2
nWn −

( N∑
n=1

xnWn

)2
,

E
[
Var(X |W1, . . . ,WN )

]
=

N∑
n=1

x2
nE[Wn]−

N∑
m=1

N∑
n=1

xmxnE[WmWn]

=
1
N

N∑
n=1

x2
n −

N∑
n=1

[
α+

1
N2

]
− 2

∑
m<n

xmxn

(
1
N2
− α

N − 1

)

=
1
N

N∑
n=1

x2
n −

( 1
N

N∑
n=1

xn

)2
− α

(
N∑
n=1

x2
n − 2

∑
m<n

xmxn
N − 1

)

=
1
N

N∑
n=1

x2
n −

( 1
N

N∑
n=1

xn

)2
− α

N∑
n=1

xn

xn − 1
N − 1

∑
m:m 6=n

xm


= s2 − α

N∑
n=1

(xn − 1
N

N∑
m=1

xm

)(
xn −

1
N − 1

∑
m:m 6=n

xm

) , (1)

where s2 is the variance of the random variable with probability mass 1/N at each of
x1, . . . , xN . When α = 0, this gives the sample variance of x1, . . . , xN . We see, by writ-
ing the expression in the form (1), that adding a constant to x1, . . . , xN does not change the
answer.

2. Let {X(t), 0 ≤ t ≤ T} be a Brownian motion with initial distribution X(0) ∼ Normal(ν, τ2).
In other words, {X(t)} has continuous sample paths and stationary independent increments
having distribution X(t + s) − X(t) ∼ Normal(0, σ2s) for s > 0. Let Y (t) = X(T − t) for
0 ≤ t ≤ T .

(a) Explain why {Y (t), 0 ≤ t ≤ T} is a diffusion process.

Solution: {Y (t), 0 ≤ t ≤ T} inherits continuous sample paths from {X(t), 0 ≤ t ≤ T}. In the
symmetric form (that the past and future are conditionally independent given the present)
the Markov property for the time-reversed process {Y (t), 0 ≤ t ≤ T} follows immediately
from the corresponding property for {X(t), 0 ≤ t ≤ T}.
(b) Obtain the infinitesimal parameters of {Y (t)}.
Solution:(

Y (t)
Y (t+ δ)

)
∼ Normal

[(
ν
ν

)
,

(
σ2(T − t) + τ2 σ2(T − t− δ) + τ2

σ2(T − t− δ) + τ2 σ2(T − t− δ) + τ2

)]
, (2)

from which we obtain

E[Y (t+ δ) |Y (t)] = ν +
σ2(T − t− δ) + τ2

σ2(T − t) + τ2
(Y (t)− ν)

E[Y (t+ δ)− Y (t) |Y (t)] = (ν − Y (t))
[
1− σ2(T − t− δ) + τ2

σ2(T − t) + τ2

]
=

δ(ν − Y (t))
σ2(T − t) + τ2
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Var[Y (t+ δ) |Y (t)] = σ2(T − t− δ) + τ2 − {σ
2(T − t− δ) + τ2}2

σ2(T − t) + τ2

=
[σ2(T − t− δ) + τ2][σ2(T − t) + τ2]− [σ2(T − t− δ) + τ2]2

σ2(T − t) + τ2

= δσ2 + o(δ)

Thus, the infinitesimal mean is µ(y, t) = (ν−y)/[σ2(T −t)+τ2] and the infinitesimal variance
is σ2.

(c) In the special case with ν = 0, τ = 0 and T = 1, comment on how the behavior of
{Y (t), 0 ≤ t ≤ T} relates to a well-known diffusion process.

Solution: In this case, the infinitesimal parameters match those of the Brownian bridge.
{Y (t), 0 ≤ t ≤ T} is not quite the usual Brownian bridge, since Y (0) ∼ Normal(ν, σ2T + τ2).
However, if you condition {Y (t), 0 ≤ t ≤ T} on {Y (0) = 0}, you get exactly a Brownian
bridge.

3. We wish to show that not every discrete time Markov chain can be embedded in a continuous
time Markov chain. To formalize this, let {Xn, n = 0, 1, 2, . . . } be a discrete time Markov
chain with states {1, 2, . . . ,K} having transition probabilites Pij , and let {X(t), t ≥ 0} be a
continuous time Markov chain with states {1, 2, . . . ,K} having transition rates qij . We say
that {Xn, n = 0, 1, 2, . . . } is embedded in {X(t), t ≥ 0} if {X(n), n = 0, 1, 2, . . . } has the
same distribution as {Xn, n = 0, 1, 2, . . . }.
Specifically, you are asked to consider the caseK = 2 with {Xn} having a symmetric transition
probability matrix,

P = [Pij ] =
(

α 1− α
1− α α

)
for 0 < α < 1.

For what values of α does an embedding exist?

Solution: The initial distribution can be assigned to be the same for X0 and X(0), so we need
to match the transition probabilities. A general Q-matrix for {X(t)} is

Q =
(
−β β
γ −γ

)
.

Intuitively, it may seem necessary that β = γ since the embedded process is symmetric.
One way to check this is to match the limiting distributions. Solving detailed balance gives
limn→∞ P(Xn = 1) = 1/2 and limt→∞ P(X(t) = 1) = γ/(β + γ), implying γ = β. Then,
the eigenvalues of Q are 0 and −2β, and the transition probabilities are therefore a linear
combination of 1 and e−2βt, which can be computed as

P (t) = eQt =
(

(1 + e−2βt)/2 (1− e−2βt)/2
(1− e−2βt)/2 (1 + e−2βt)/2

)
.

The requirement that P (1) = P gives β = −1
2 log(2α − 1), which has a solution only when

α > 1/2.
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4. Consider a partially observed discrete stochastic process {(Xn, Yn), n = 1, 2, . . . }, where
{Yn, n = 1, 2, . . . } is observed and {Xn, n = 1, 2, . . . } is unobserved. Suppose that, marginally,
{Xn} is a Markov chain taking values in a finite set X. Suppose {Yn} takes values in a fi-
nite set Y. To model Yn as a noisy observation of Xn, we suppose {Yn} has a conditional
independence property that

P(Yn = jn |X1 = i1, . . . , Xn = in, Y1 = j1, . . . , Yn−1 = jn−1) = P(Yn = jn |Xn = in).

We are interested in computing the following quantities, concerning the conditional distribu-
tion of {Xn} given observed values Y1 = j1, Y2 = j2, . . .

C(i, n) = P(Xn = i |Y1 = j1, Y2 = j2, . . . , Yn = jn)
P (i, n) = P(Xn = i |Y1 = j1, Y2 = j2, . . . , Yn−1 = jn−1)
S(i, n) = P(Xn = i |Y1 = j1, Y2 = j2, . . . , YN = jN ) for N > n

Here, C(i, n) is current state estimation given observations up to time n; P (i, n) is prediction
of the state at time n using observations up to time n − 1; S(i, n) is so-called smoothed
estimation of the state at time n using observations up to time N .

(a) Prove the following recursions:

C(i, n) =
P (i, n) P(Yn = jn |Xn = i)∑
k∈XP (k, n) P(Yn = jn |Xn = k)

P (i, n+ 1) =
∑

k∈XC(k, n) P(Xn = i |Xn−1 = k)

Solution:

C(i, n) = P(Xn = i |Y1 = j1, Y2 = j2, . . . , Yn = jn)

=
P(Yn = jn |Xn = i, Y1 = j1, Y2 = j2, . . . , Yn−1 = jn−1)P(Xn = i |Y1 = j1, . . . , Yn−1 = jn−1)

P(Yn = jn |Y1 = j1, Y2 = j2, . . . , Yn−1 = jn−1)

=
P(Yn = jn |Xn = i)P (i, n)∑

k P(Yn = j,Xn = k |Y1 = j1, Y2 = j2, . . . , Yn−1 = jn−1)

=
P(Yn = jn |Xn = i)P (i, n)∑

k P(Yn = jn |Xn = k, Y1 = j1, . . . , Yn−1 = jn−1)P(Xn = k |Y1 = j1, Y2 = j2, . . . , Yn−1 = jn−1)

=
P(Yn = jn |Xn = i)P (i, n)∑
k P(Yn = jn |Xn = k)P (k, n)

P (i, n+ 1) = P(Xn+1 = i |Y1 = j1, Y2 = j2, . . . , Yn = jn)

=
∑

k

P(Xn+1 = i |Xn = k, Y1 = j1, Y2 = j2, . . . , Yn = jn)P(Xn = k |Y1 = j1, . . . , Yn = jn) (3)

=
∑

k

P(Xn+1 = i |Xn = k)P(Xn = k |Y1 = j1, Y2 = j2, . . . , Yn = jn) (4)

=
∑

k

C(n, k)P(Xn+1 = i |Xn = k)

where (4) follows from (3) by checking that

P(Xn+1 = i |Xn = k, Y1 = j1, Y2 = j2, . . . , Yn = jn) = P(Xn+1 = i |Xn = k).
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(b) Prove the relationship

S(i, n) =
P (i, n)R(i, n)∑

k∈X P (k, n)R(k, n)
,

where
R(i, n) = P(Yn = jn, Yn+1 = jn+1, . . . YN = jN |Xn = i).

Solution:

S(i, n) = P(Xn = i |Y1 = j1, Y2 = jn, . . . , YN = jN )

=
P(Yn = jn, . . . , YN = jN |Xn = i, Y1 = j1, . . . , Yn−1 = jn−1)P(Xn = i |Y1 = j1, . . . , Yn−1 = jn−1)∑
k P(Yn = jn, . . . , YN = jN |Xn = k, Y1 = j1, . . . , Yn−1 = jn−1)P(Xn = k |Y1 = j1, . . . , Yn−1 = jn−1)

=
P(Yn = jn, . . . , YN = jN |Xn = i)P(Xn = i |Y1 = j1, . . . , Yn−1 = jn−1)∑
k P(Yn = jn, . . . , YN = jN |Xn = k)P(Xn = k |Y1 = j1, . . . , Yn−1 = jn−1)

=
R(n, i)P (n, i)∑
k R(n, k)P (n, k)

5. Let Xn, n = 1, 2, · · · be independent, identically distributed random variables.

(a) If X1 ∈ Lp, p ≥ 1, then show that

X1 + · · ·+Xn

n

Lp

−→ E(X1), as n→∞.

(b) If Xn/n converges almost surely to zero, as n→∞, then show that E|X1| <∞.

Solution: (a): By the SLLN, we have that Sn/n→ µ, almost surely, where µ = E(X1). The
Lp convergence then holds if and only if {|Sn/n|p, n ≥ 1} is u.i. Observe that since x 7→ |x|p,
is convex for p ≥ 1, then the Jensen’s inequality implies:

E|Sn/n|p ≤
n∑
k=1

E|Xk|p/n = E|X1|p.

This shows that supn≥1 E|Sn/n|p < ∞. To prove desired the u.i. it is enough to show that
for all ε > 0, there exists δ > 0, such that

E
(
|Sn/n|p1A

)
≤ ε, for all events A with P (A) < δ.

Note, as above, that by Jensen’s

E
(
|Sn/n|p1A

)
≤ 1
n

n∑
k=1

E(|Xk|p1A) ≤ sup
k≥1

E|Xk|p1A.

Since the Xk’s are iid and belong to Lp, it follows that {|Xk|p, k ≥ 1} is u.i. and the latter
supremum (by definition) can be made to be less than ε > 0, provided δ > 0 is sufficiently
small.

6



(b): For any fixed ε > 0, we have that |Xn/n| < ε, eventually. That is, P(|Xn/n| > ε, i.o.) =
0. But since the Xn’s are independent, the Borel zero-one law implies that

∞∑
n=1

P(|Xn/n| > ε) <∞.

Since the Xn’s are identically distributed and by taking ε := 1, we then have that

E|X1| ≤ E
∞∑
n=0

1|X1|>n =
∞∑
n=0

P(|Xn/n| > 1) <∞.

�

6. Let Xn, n = 1, 2, · · · be independent random variables such that Xn ∼ Gamma(αn, 1), αn >
0. That is, the probability density of Xn is

fXn(x) =
{
xαn−1e−x/Γ(αn) , if x > 0
0 , otherwise,

where Γ(α) :=
∫∞

0 xα−1e−xdx, α > 0 is the Euler gamma function.

(a) If
∑∞

n=1 αn <∞, then show that the series
∑∞

n=1Xn converges almost surely and in the
L2 sense.

(b) If
∑∞

n=1 αn =∞, then show that

Sn − E(Sn)√
Var(Sn)

=⇒ Normal(0, 1), as n→∞,

where Sn =
∑n

k=1Xk.

Hint: Although it would in principle be possible to use a Lindeberg-Feller argument, you are
not advised to follow that approach.

Solution: (a): Recall that E(Xk) = αk and Var(Xk) = αk. Therefore,
∑∞

n=1 Var(Xn) < ∞
and the Kolmogorov’s convergence criterion implies that

∞∑
n=1

(Xn − E(Xn))

converges almost surely. Since however
∑∞

n=1 E(Xn) =
∑∞

n=1 αn < ∞, it also follows that∑∞
n=1Xn converges almost surely.

(b): Note that Sn ∼ Gamma(vn, 1), where vn =
∑n

k=1 αk →∞, as n→∞. Let ξk, k ≥ 1 be
iid Gamma(1, 1) and observe that

Sn
d= S̃n +Rn,

where S̃n = ξ1 + · · ·+ ξ[vn] and Rn ∼ Gamma({vn}, 1) is independent of the ξk’s.
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By the classic CLT, we have that (S̃n − E(S̃n))/
√

Var(S̃n)⇒ N (0, 1). Note also that ES̃n =

[vn] and Var(S̃n) = [vn]. Therefore, it is easy to see that by Slutsky’s theorem, it is enough
to show that Rn/

√
[vn]→ 0, in probability. We have that

E|Rn| = E(Rn) =
∫ ∞

0
x{vn}e−xdx/Γ({vn}) = Γ(1 + {vn})/Γ({vn}) = {vn} ≤ 1.

This implies Rn/
√

[vn] → 0, n → ∞, in L1-sense and hence in probability. This completes
the proof.
�

7. Let X0 = 1 and define the random variables Xn, n ≥ 1 recursively as follows. Introduce the
σ-algebra Fn := σ(X0, · · · , Xn), n ≥ 0. Conditionally on Fn, the random variable Xn+1 is
uniformly distributed in the interval (−Sn, Sn), where Sn = X0 + · · ·+Xn, n ≥ 0.

(a) Show that {Sn, n ≥ 1} is a martingale and compute E(Sn) and Var(Sn).

(b) Show that Sn > 0 almost surely, and that for some positive sequences an and bn, the
random variables San

n /bn converge in distribution to a non-trivial limit, as n → ∞. Identify
explicitly the sequences {an} and {bn}, and the limit distribution.

Hint: Express Sn in terms of independent random variables.

Solution: (a): Observe that Xn+1 = SnUn+1, where Un+1 ∼ U(−1, 1) is independent of
X0, X1, · · · , Xn. Therefore,

Sn+1 = Sn(1 + Un+1) =
n+1∏
k=1

(1 + Uk),

where Uk, k = 1, 2, · · · are iid U(−1, 1). We then have that

E(Sn+1|Fn) = SnE(1 + Un+1) = Sn,

showing that Sn, n ≥ 0 is a martingale.

Since S0 = 1, and since {Sn, n ≥ 0} is a martingale, we have that E(Sn) = 1. By the
smoothing property and independence, we also have that

E(S2
n+1) = EE(S2

n+1|Fn) = E(S2
n)E(1 + Un+1)2.

Note that 1 + Un+1 ∼ U(0, 2), and therefore E(1 + Un+1)2 =
∫ 2

0 x
2dx/2 = 4/3. Applying the

last relation recursively, we obtain

E(S2
n) = (4/3)n

and hence Var(Sn) = E(S2
n)− (ESn)2 = (4/3)n − 1, n ≥ 0.
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(b): The above representation shows that P(Sn > 0) = 1 since P(Un > −1) = 1, n ≥ 1. By
taking logarithms, we have

log(Sn) =
n∑
k=1

log(1 + Uk).

Observe that log(2)− log(1 +Uk) =: Xk ∼ Exp(1) are standard iid exponentially distributed
random variables. Therefore, the classic CLT for

∑n
k=1Xk implies that

(log(Sn)− E(log(Sn)))/
√

Var(log(Sn))⇒ N (0, 1), as n→∞.

Note that E(log(Sn)) = n(log(2)− 1) and Var(log(Sn)) = n. The last relation along with the
CMT applied to the mapping x 7→ ex implies

S1/
√
n

n e
√
n(1−log(2)) =⇒ eZ , as n→∞,

where Z ∼ N (0, 1). That is, for the sequences an and bn we have

an = 1/
√
n and bn = e

√
n(log(2)−1),

and the limit distribution is log-Normal. �

8. Suppose that Yk, k = 1, 2, · · · are independent and identically distributed random variables
such that E(Y1) = 0 and Var(Y1) = 1. Let {Xk, k = 1, 2, · · · } be a sequence of positive
random variables, independent of {Yk, k = 1, 2, · · · }, such that

maxk=1,··· ,nX
2
k∑n

j=1X
2
j

a.s.−→ 0, as n→∞.

(a) Let

Zn :=
∑n

k=1XkYk√∑n
j=1X

2
j

and calculate E(Zn) and Var(Zn).

(b) Let FX := σ(Xk, k ≥ 1) and show that for all bounded and continuous functions f , we
have

E(f(Zn)|FX) −→ Ef(Z), almost surely,

as n→∞, where Z is a standard Normal random variable.

(c) Using part (b), argue that

Zn =⇒ Normal(0, 1), as n→∞.

Solution: (a): By the smoothing property of conditional expectation, we have that

EZn = EE(Zn|FX) = E(0) = 0.
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Similarly

Var(Zn) = E(Z2
n) = EE(Z2

n|FX) = E
( 1∑n

k=1X
2
k

E(
n∑
j=1

YjXj)2|FX
)

= E(1) = 1.

(b): Without loss of generality, we will suppose that the random variables are defined on a
product probability space, so that ω = (ωx, ωy) ∈ ΩX×ΩY , where P(dω) = PX(dωx)PY (dωy),
and where the events in the σ-algebras FX and FY = σ(Yk, k ≥ 1) are of the type A × ΩY

and ΩX × B, respectively. Observe that by using Fubini’s theorem, and the definition of
conditional expectation, one can show that

E(ξ|FX)(ωx, ωy) =
∫

ΩY

ξ(ωx, ωy)PY (dωy), (5)

for all P-integrable ξ.

Fix an ωx ∈ ΩX , t > 0, and consider the Lindeberg-Feller condition

LCn(ωx) =
1
S2
n

n∑
k=1

X2
kE
(
Y 2
k 1{Y 2

k >t
2S2

n/X
2
k}
|FX

)
,

where S2
n =

∑n
k=1X

2
k .

Observe that the Lindeberg-Feller theorem is valid if LCn → 0 for a countable set of t’s
that have the zero as a limit point. We will show that for all fixed t > 0 (and therefore
for a countable collection of t’s), we have LCn(ωx) → 0, as n → ∞, for PX -almost all
ωx ∈ ΩX . This would imply that over a PX -probability one set, we have that Zn(·, ωx)⇒ Z,
as n → ∞, which in view of (5) would yield E(f(Zn)|FX) → Ef(Z), with probability one,
for any bounded and continuous function f .

We have that {Y 2
k > t2S2

n/X
2
k} implies {Y 2

k > t2S2
n/maxk=1,··· ,nX

2
k} and hence

E
(
Y 2
k 1{Y 2

k >t
2S2

n/X
2
k}
|FX

)
≤ EY (Y 2

k 1{Y 2
k >t

2S2
n/maxj=1,··· ,n X2

j }
)

= EY (Y 2
1 1{Y 2

1 >t
2S2

n/maxj=1,··· ,n X2
j }

).

The latter expectation vanishes PX -a.s. since EY (Y 2
1 ) <∞ and since by assumption, we have

S2
n/maxj=1,··· ,nX

2
j → ∞, PX−a.s. This completes the solution of part (b) since in view of

the last inequality, we have

LCn(ωx) ≤ 1
S2
n

n∑
k=1

X2
kEY (Y 2

1 1{Y 2
1 >t

2S2
n/maxj=1,··· ,n X2

j }
) = EY (Y 2

1 1{Y 2
1 >t

2S2
n/maxj=1,··· ,n X2

j }
)→ 0,

for PX -almost all ωx.

(c): By part (b), for any bounded and continuous function f , we have that E(f(Zn)|FX)→
E(f(Z)), almost surely. Since |E(f(Zn)|FX)| ≤ supx∈R |f(x)|, by the Lebesgue DCT applied
to the random variables E(f(Zn)|FX), we obtain

E(f(Zn)) = E
(
E(f(Zn)|FX)

)
→ Ef(Z).

Since the latter convergence is valid for all bounded and continuous functions f , it follows
that Zn ⇒ Z, n→∞. �
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