
Probability Qualifying Review Exam
Friday May 24, 2013

9a.m. to 1p.m.

Instructions:

• You are allowed only pen (or pencil) and paper. Calculators, cell phones, and any other
electronic device should not be brought into the exam room.

• You may answer up to seven of the eight questions. Each question carries equal credit. If you
submit solutions to all eight questions then only the first seven will be graded.

• Questions 1-4 cover material from Stat 620. Questions 5-8 cover material from Stat 621.
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1. This question studies a random variable with a random probability mass function, constructed
as follows. Let Z1, . . . , ZN be independent, identically distributed, positive random variables.
Let

Wn =
Zn∑N

m=1 Zm
for n = 1, . . . N.

Let x1, . . . , xN be a sequence of real numbers. Let X be a random variable defined such that
P(X = xn |W1, . . . ,WN ) = Wn.

(a) Find E[Wn] and E[Wn |Wm] for m 6= n. Hint: you can appeal to symmetry to argue that
the answer should not depend on n or m.

(b) Let Var(Wn) = α. Find Cov(Wm,Wn) in terms of α, for m 6= n.

(c) Find an expression for E[Var(X |W1, . . . ,WN )] in terms of x1, . . . , xN and α. Check
whether your expression behaves appropriately in two situations; (i) when α = 0, and (ii)
when x1, x2, . . . , xN is replaced by x1 + c, x2 + c, . . . , xN + c for some constant c.

2. Let {X(t), 0 ≤ t ≤ T} be a Brownian motion with initial distribution X(0) ∼ Normal(ν, τ2).
In other words, {X(t)} has continuous sample paths and stationary independent increments
having distribution X(t + s) − X(t) ∼ Normal(0, σ2s) for s > 0. Let Y (t) = X(T − t) for
0 ≤ t ≤ T .

(a) Explain why {Y (t), 0 ≤ t ≤ T} is a diffusion process.

(b) Obtain the infinitesimal parameters of {Y (t)}.
(c) In the special case with ν = 0, τ = 0 and T = 1, comment on how the behavior of
{Y (t), 0 ≤ t ≤ T} relates to a well-known diffusion process.

3. We wish to show that not every discrete time Markov chain can be embedded in a continuous
time Markov chain. To formalize this, let {Xn, n = 0, 1, 2, . . . } be a discrete time Markov
chain with states {1, 2, . . . ,K} having transition probabilites Pij , and let {X(t), t ≥ 0} be a
continuous time Markov chain with states {1, 2, . . . ,K} having transition rates qij . We say
that {Xn, n = 0, 1, 2, . . . } is embedded in {X(t), t ≥ 0} if {X(n), n = 0, 1, 2, . . . } has the
same distribution as {Xn, n = 0, 1, 2, . . . }.
Specifically, you are asked to consider the caseK = 2 with {Xn} having a symmetric transition
probability matrix,

P = [Pij ] =
(

α 1− α
1− α α

)
for 0 < α < 1.

For what values of α does an embedding exist?

4. Consider a partially observed discrete stochastic process {(Xn, Yn), n = 1, 2, . . . }, where
{Yn, n = 1, 2, . . . } is observed and {Xn, n = 1, 2, . . . } is unobserved. Suppose that, marginally,
{Xn} is a Markov chain taking values in a finite set X. Suppose {Yn} takes values in a fi-
nite set Y. To model Yn as a noisy observation of Xn, we suppose {Yn} has a conditional
independence property that

P(Yn = jn |X1 = i1, . . . , Xn = in, Y1 = j1, . . . , Yn−1 = jn−1) = P(Yn = jn |Xn = in).
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We are interested in computing the following quantities, concerning the conditional distribu-
tion of {Xn} given observed values Y1 = j1, Y2 = j2, . . .

C(i, n) = P(Xn = i |Y1 = j1, Y2 = j2, . . . , Yn = jn)
P (i, n) = P(Xn = i |Y1 = j1, Y2 = j2, . . . , Yn−1 = jn−1)
S(i, n) = P(Xn = i |Y1 = j1, Y2 = j2, . . . , YN = jN ) for N > n

Here, C(i, n) is current state estimation given observations up to time n; P (i, n) is prediction
of the state at time n using observations up to time n − 1; S(i, n) is so-called smoothed
estimation of the state at time n using observations up to time N .

(a) Prove the following recursions:

C(i, n) =
P (i, n) P(Yn = jn |Xn = i)∑
k∈XP (k, n) P(Yn = jn |Xn = k)

P (i, n+ 1) =
∑

k∈XC(k, n) P(Xn = i |Xn−1 = k)

(b) Prove the relationship

S(i, n) =
P (i, n)R(i, n)∑

k∈X P (k, n)R(k, n)
,

where
R(i, n) = P(Yn = jn, Yn+1 = jn+1, . . . YN = jN |Xn = i).

5. Let Xn, n = 1, 2, · · · be independent, identically distributed random variables.

(a) If X1 ∈ Lp, p ≥ 1, then show that

X1 + · · ·+Xn

n

Lp

−→ E(X1), as n→∞.

(b) If Xn/n converges almost surely to zero, as n→∞, then show that E|X1| <∞.

6. Let Xn, n = 1, 2, · · · be independent random variables such that Xn ∼ Gamma(αn, 1), αn >
0. That is, the probability density of Xn is

fXn(x) =
{
xαn−1e−x/Γ(αn) , if x > 0
0 , otherwise,

where Γ(α) :=
∫∞
0 xα−1e−xdx, α > 0 is the Euler gamma function.

(a) If
∑∞

n=1 αn <∞, then show that the series
∑∞

n=1Xn converges almost surely and in the
L2 sense.

(b) If
∑∞

n=1 αn =∞, then show that

Sn − E(Sn)√
Var(Sn)

=⇒ Normal(0, 1), as n→∞,
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where Sn =
∑n

k=1Xk.

Hint: Although it would in principle be possible to use a Lindeberg-Feller argument, you are
not advised to follow that approach.

7. Let X0 = 1 and define the random variables Xn, n ≥ 1 recursively as follows. Introduce the
σ-algebra Fn := σ(X0, · · · , Xn), n ≥ 0. Conditionally on Fn, the random variable Xn+1 is
uniformly distributed in the interval (−Sn, Sn), where Sn = X0 + · · ·+Xn, n ≥ 0.

(a) Show that {Sn, n ≥ 1} is a martingale and compute E(Sn) and Var(Sn).

(b) Show that Sn > 0 almost surely, and that for some positive sequences an and bn, the
random variables San

n /bn converge in distribution to a non-trivial limit, as n → ∞. Identify
explicitly the sequences {an} and {bn}, and the limit distribution.

Hint: Express Sn in terms of independent random variables.

8. Suppose that Yk, k = 1, 2, · · · are independent and identically distributed random variables
such that E(Y1) = 0 and Var(Y1) = 1. Let {Xk, k = 1, 2, · · · } be a sequence of positive
random variables, independent of {Yk, k = 1, 2, · · · }, such that

maxk=1,··· ,nX
2
k∑n

j=1X
2
j

a.s.−→ 0, as n→∞.

(a) Let

Zn :=
∑n

k=1XkYk√∑n
j=1X

2
j

and calculate E(Zn) and Var(Zn).

(b) Let FX := σ(Xk, k ≥ 1) and show that for all bounded and continuous functions f , we
have

E(f(Zn)|FX) −→ Ef(Z), almost surely,

as n→∞, where Z is a standard Normal random variable.

(c) Using part (b), argue that

Zn =⇒ Normal(0, 1), as n→∞.
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