STATS 700-002 Class 11. Final project suggestions

Aaron King and Edward Ionides

November 6, 2025

Suggestions I

- Andréoletti et al. (2022). The occurrence birth-death process for combined-evidence analysis in macroevolution and epidemiology. Systematic Biology syac037. https://doi.org/10.1093/sysbio/syac037. Summarize the key methodological ideas, compare them with standard birth-death and coalescent approaches, and discuss their implications for macroevolutionary and epidemiological inference. Try reproducing a small example from the paper.
- 2. Experiment with phylodeep. This package relates to Voznica et al. (2022). Deep learning from phylogenies to uncover the transmission dynamics of epidemics. Nat Commun 13:3896 https://doi.org/10.1038/s41467-022-31511-0. Three others proposed studying this paper. In particular, in the new Compact Bijective Ladderized Vector (CBLV) representation developed to facilitate deep learning.

Suggestions II

- 3. Reproducing results from Ki, C., & Terhorst, J. (2022). Variational phylodynamic inference using pandemic-scale data. *Molecular Biology and Evolution*, 39(8), msac154. https://doi.org/10.1093/molbev/msac154.
- 4. Reproducing results from King, A. A., Lin, Q., & Ionides, E. L. (2025). Exact phylodynamic likelihood via structured Markov genealogy processes. *ArXiv:2405.17032*. https://doi.org/10.48550/arXiv.2405.17032.
- Reproducing results from King, A. A., Lin, Q., & Ionides, E. L. (2022). Markov genealogy processes. *Theoretical Population Biology*, 143, 77-91. https://doi.org/10.1016/j.tpb.2021.11.003.
- Reproducing results from Vaughan, T. G., & Stadler, T. (2025). Bayesian Phylodynamic Inference of Multitype Population Trajectories Using Genomic Data. Molecular Biology and Evolution, 42(6), msaf130. https://doi.org/10.1093/molbev/msaf130.

Suggestions III

- 7. Read Thompson, A, Liebeskind, BJ, Scully, EJ, & Landis, MJ. (2024). Deep learning and likelihood approaches for viral phylogeography converge on the same answers whether the inference model is right or wrong. *Systematic Biology* 73:183–206. https://doi.org/10.1093/sysbio/syad074. (Suggested three times) Perhaps try modifying the code to assess the effects of model misspecification, or varying amounts of data, or details of the BEAST pipeline.
- 8. Phylogeography. Inferring movement of humans, viruses, or other species from genetic data. Two people proposed this. In addition to (7), a suggested paper is De Maio, N, Wu, CH, O'Reilly, KM, & Wilson, D. (2015). New routes to phylogeography: a Bayesian structured coalescent approximation. *PLOS Genetics* 11:e1005421. https://doi.org/10.1371/journal.pgen.1005421

Suggestions IV

- 9. Sequential Markov coalescent to address recombination. There are relationships between demographic history of a population, time to most recent common ancestor at a given site in the genome, and linkage between sites. The Terhorst group has investigated such questions. What can be learned by comparison with other phylodynamic tools?
- 10. Zika as a study in sampling-aware phylodynamics with Nextstrain. Nextstrain build and example data: https://nextstrain.org/zika Repository with inputs and configuration: https://github.com/nextstrain/zika
- 11. Dengue to look at the role of competing serotypes. Nextstrain dengue portal with serotype-specific views (DENV1–DENV4): https://nextstrain.org/dengue Repository with workflows and curated inputs: https://github.com/nextstrain/dengue

Other brainstorming ideas

- 12. Explain phylopomp (https://github.com/kingaa/phylopomp) to the class, perhaps in the context of the code for King et al., 2025.
- 13. Extend or improve the analysis in Peter Yang's honors thesis on Phylodynamic Inference of MERS-CoV Using Structured Markov Genealogy Processes, which has code on GitHub.