
Homework 13. Due by 5pm on Thursday 12/3.

A workflow for reproducible statistical research: combining Latex and R with
knitr

There are numerous advantages to writing a statistics paper in such a way that the ta-
bles, figures and other quantitative results are automatically generated from chunks of code
included in the document. These include:

1. Changing the data. Questions like “How stable are my conclusions? What happens to
all my figures and tables if I omit the 5 smallest states from my panel of 50 states?”
can be rapidly answered. The easier it is to investigate new analyses, the more things
you try.

2. Effective collaboration. All coauthors can read, run and modify all the code that
produced the figures in the current version of a circulated draft.

3. Debugging. If your adviser asks “How exactly did this number get produced?” you
can give a rapid, precise and accurate answer.

4. Updating. If you are presenting code (e.g., a lab presentation) and you want to make
changes where necessary for a new software version, you simply re-run the document.

5. Revisions. 4 months after you submitted the paper, when the referee reports come
back, you will be glad if you have your work organized in this way!

Rmarkdown and Jupyter are convenient platforms for exploratory investigations, but knitr is
well placed to generate Latex for publication-quality pdf articles. This homework investigates
a workflow (meaning a set of tools and procedures that together get research done effectively)
used for the research project at

https://github.com/ionides/bagged_filters

The code is somewhat complex and involves various features that may be new to you. You
are welcome to ask your peers for help if you get stuck. This is an open-ended assignment
pulling together things we have studied earlier, and some new material. You are welcome
to decide for yourself how long to spend on it. Edit the file 810f20/hw13.Rnw with your
answers, build a pdf and submit to Canvas.

1. Clone the bagged filters git repository to your laptop, as in Homework 9. There are
three pdf files:

(a) ms.pdf, the main article.

(b) si.pdf, an online supplement to be published with the article.

1



(c) ext/ext.pdf, unpublished results and ideas saved during the research.

We will focus on ms.pdf. You do not have to report anything for this step.

2. The source file for ms.pdf is ms.Rnw, a file in R noweb format designed to be run by
knitr(). Rstudio runs knitr() automatically when you ask it to build from an Rnw
file, but for workflows based on text commands it is good practice to call knitr()
directly from R. Rnw files simply combine chunks of LATEXwith chunks of R code.

Have you used Rnw format before, either through Rstudio or not? Rnw has some
similarities with the Rmarkdown (Rmd) format. Rmd is slightly simpler and quicker
for some tasks, but more difficult for fine control of Latex.

YOUR ANSWER HERE

3. There are various ways to compile ms.Rnw to ms.pdf. All of them need the necessary
R packages, which you may need to install on your laptop or greatlakes or anywhere
else you try running the code. Most of the R packages required are on CRAN, but the
spatPomp package is not. It is at

https://github.com/kidusasfaw/spatPomp

There are different ways to install an R package from source code. A direct approach
is to clone the repository and then run

R CMD INSTALL spatPomp

in the directory where spatPomp is located. Alternatively, you can use install github()

from the devtools package. Note that before installing spatPomp you will need to have
pomp installed, for which you may need to consult the instructions at

https://kingaa.github.io/pomp/install.html.

The installation of pomp is nontrivial because this package carries out compilation of
C code, so you need to have a C compiler installed and talking properly to R. Time
spent figuring this out is not entirely wasted.

Now, in an R session running in the bagged filters directory, you can run

library(knitr)

knit("ms.Rnw")

If all is well, this will generate a file ms.tex which can be used to produce ms.pdf by
running pdflatex. Likely, issues will arise that need to be solved to get this working.
Spend a reasonable amount of time trying to get this working. It is okay if you cannot
get the code to run, since many of the questions do not depend on this. Report on
whether you were successful, what problems you overcame, and where you got stuck.

YOUR ANSWER HERE.

2



4. Have you used make before? (https://en.wikipedia.org/wiki/Make_(software))
This is a standard tool for organizing scientific coding projects, and it is installed by
default on Mac and Linux systems. The bagged filters directory has a Makefile, so
you can run

make ms.pdf

at a terminal prompt to build ms.pdf from ms.Rnw. This just runs knitr followed by
pdflatex so it cannot work unless the separate steps are working. Try this, and report
briefly

YOUR ANSWER HERE.

5. The manuscript can also be built on greatlakes, and this is appropriate for a production
version having numerical calculations too extensive for a laptop. Identify the critical
lines of code to enable the program to run on either greatlakes or a laptop.

YOUR ANSWER HERE

Optionally, work on building ms.tex on greatlakes, by running

sbatch ms.sbat

This requires cloning the git repository to greatlakes and installing all necessary R
packages locally in your greatlakes account.

6. Writing a reasonably large reproducible document combining text and code, you cannot
avoid the issue of caching. You do not want to re-run all computations each time you
edit any text in the document, so you must save (i.e., cache) results that do not need
to be recomputed. Ideally, when we edit code we would re-run only the partial results
that have changed as a consequence of the edit. Sadly, it is intractable to automate
this in a foolproof way. The knitr code chunk option cache=TRUE re-runs a code chunk
if that particular chunk is edited. It is necessary to delete all cached files (e.g., rm -rf

cache) occasionally to rebuilt the cache correctly. In ms.Rnw, the stew() function
from the pomp package is used to give additional manual control of caching the most
time-consuming results.

Have you had any prior experience working with cache on reproducible documents?

YOUR ANSWER HERE.

7. For debugging, it is helpful to have a quick version of the code which can be run to
check for errors before starting a long, expensive computing job. Setting run level=1

in ms.Rnw gives a version of the code that runs in a few seconds. If you can successfully
compile ms.tex or ms.pdf, try deleting all the cached results from run level=1 by

3



rm -rf *_1

Then if you knit the document you will run quick versions of all the computations.
Did that work for you?

If you are new to Linux/Unix, work out what the parts of the command rm -rf * 1

do. The f flag may not be necessary for you.

YOUR ANSWER HERE.

8. Workflows for writing manuscripts are build up over years, borrowed, shared, and
modified for different purposes and evolving technologies. Compare this workflow with
the range of techniques you already use.

YOUR ANSWER HERE.

9. Notice how the random number generator seed is set to give reproducible results (e.g.,
search for “seed” in ms.Rnw). Subtle problems can arise when setting seeds for parallel
computations. Can you think of any? Perhaps the solution here should be improved.

YOUR ANSWER HERE.

4


