
Homework 12. Due by 11:59pm on Sunday 11/27.

A workflow for reproducible statistical research: combining Latex and R with
knitr

There are numerous advantages to writing a statistics paper in such a way that the ta-
bles, figures and other quantitative results are automatically generated from chunks of code
included in the document. These include:

1. Investigating the stability of conclusions. Questions like, “What happens to all my
figures and tables if I omit the 5 smallest states from my panel of 50 states?” can be
rapidly answered. The easier it is to investigate new analyses, the more things you
explore.

2. Effective collaboration. All coauthors can read, run and modify all the code that
produced the figures in the current version of a circulated draft.

3. Debugging. If your adviser asks “How exactly did this number get produced?” you
can give a rapid, precise and accurate answer.

4. Updating. If you are presenting code (e.g., a lab presentation) and you want to make
changes where necessary for a new software version, you simply re-run the document.

5. Revisions. 4 months after you submitted the paper, when the referee reports come
back, you will be glad if you have your work organized in this way!

Rmarkdown and Jupyter are convenient platforms for exploratory investigations, but Rnw
(a format associated with the R package knitr) is better placed to generate Latex for
publication-quality pdf articles. This homework investigates a workflow, meaning a set
of tools and procedures that together get research done effectively, used for the research
project at https://github.com/ionides/bagged_filters. The code is somewhat com-
plex and involves various features that may be new to you. You are welcome to ask your
peers for help if you get stuck.

Edit the file 810f22/hw12.Rnw with your answers, build a pdf and submit it to Canvas.
To get started, clone the bagged filters git repository to your laptop, as in Homework 9.
There are two pdf files:

• ms.pdf, the main article.

• si/si.pdf, an online supplement for the article.

We will focus on ms.pdf.

1

https://github.com/ionides/bagged_filters


1. The source file for ms.pdf is ms.Rnw, a file in R noweb format designed to be run by
knitr::knit(). Rstudio runs knit() automatically when you ask it to build from an
Rnw file, but for workflows based on text commands it is good practice to call knit()
directly from R. Rnw files simply combine chunks of LATEXwith chunks of R code.

Have you used Rnw format before, either through Rstudio or not? Rnw has some
similarities with the Rmarkdown (Rmd) format. Rmd is slightly simpler and quicker
for some tasks, but Rnw is better for fine control of Latex.

YOUR ANSWER HERE

2. There are various ways to compile ms.Rnw to ms.pdf. All of them need the necessary R
packages, which you may need to install on your laptop or greatlakes or anywhere else
you try running the code. Note that before installing spatPomp you will need to have
pomp installed, for which you may need to consult the instructions at https://kingaa.
github.io/pomp/install.html. The installation of pomp is nontrivial because this
package carries out compilation of C code, so you need to have a C compiler installed
and talking properly to R. Time spent figuring this out is not entirely wasted, since
it demonstrates an approach to combining the computational efficiency of C with the
statistical analysis environment of R.

Now, in an R session running in the bagged filters directory, you can run

library(knitr)

knit("ms.Rnw")

If all is well, this will generate a file ms.tex which can be used to produce ms.pdf by
running pdflatex. Likely, issues will arise that need to be solved to get this working.
Spend a reasonable amount of time trying to get this working. Some debugging advice
is posted on the class website at hw12supp.html. It is okay if you cannot get the
code to run, since the subsequent questions can be answered without this. Report on
whether you were successful, what problems you overcame, and where you got stuck.

YOUR ANSWER HERE.

3. Have you used make before? (https://en.wikipedia.org/wiki/Make_(software))
This is a standard tool for organizing scientific coding projects, and it is installed by
default on Mac and Linux systems. The bagged filters directory has a Makefile, so
you can run

make ms.pdf

at a terminal prompt to build ms.pdf from ms.Rnw. This just runs knit followed by
pdflatex so it cannot work unless the separate steps are working. For debugging, it
can be better to run knit and pdflatex sequentially. Other things to experiment with
if you are new to make:

2

https://kingaa.github.io/pomp/install.html
https://kingaa.github.io/pomp/install.html
https://en.wikipedia.org/wiki/Make_(software)


make -n ms.pdf

make -B ms.pdf

make -nB ms.pdf

Try this, and report briefly

YOUR ANSWER HERE.

4. The manuscript can also be built on greatlakes, and this is appropriate for a production
version having numerical calculations too extensive for a laptop. However, the version
of ms.Rnw in the repository is set to run quickly, via the code run level <- 1. This
lets you run a preliminary version, for testing and debugging, fairly quickly on a laptop.

Writing a reasonably large reproducible document combining text and code, you cannot
avoid the issue of caching. You do not want to re-run all computations each time you
edit any text in the document, so you must save (i.e., cache) results that do not need
to be recomputed. Ideally, when we edit code we would re-run only the partial results
that have changed as a consequence of the edit. Sadly, it is intractable to automate
this in a foolproof way. The knitr code chunk option cache=TRUE re-runs a code chunk
if that particular chunk is edited. It is necessary to delete all cached files (e.g., rm -rf

cache) occasionally to rebuild the cache correctly. In ms.Rnw, the stew() function
from the pomp package is used to give additional manual control of caching the most
time-consuming results. To remove all the results for run level=1 we can do

rm -rf *_1

Have you had any prior experience working with cache on reproducible documents?

YOUR ANSWER HERE.

5. Workflows for writing manuscripts are built up over years, borrowed, shared, and
modified for different purposes and evolving technologies. Compare this workflow with
the range of techniques you already use.

YOUR ANSWER HERE.

6. Notice how the random number generator seed is set to give reproducible results (e.g.,
search for “seed” in ms.Rnw). Subtle problems can arise when setting seeds for parallel
computations. Can you think of any? This code attempts to deal with them via the
doRNG R package.

YOUR ANSWER HERE.

3


