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Background

Partially Observed Markov Processes

Unobserved Markov process {Xt, t ≥ t0}, observations y∗1, ..., y
∗
N at

timesteps t1, ..., tN .

Unknown parameter θ ∈ Θ, to be estimated.

Notation:

fXn|Xn−1
(xn | xn−1; θ) is the process model.

process (xn, θ) is the simulator corresponding to the process model.

fYn|Xn
(yn | xn, θ) is the measurement model.
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Background

Particle Filters

Figure 1:
– Dirac measure approximation of the
Bayes filter.
– Yields a filtering distribution and
likelihood estimate.
– Graphic from Berg et al. (2019).

Monte Carlo approximation of the Bayes filter.

Maintain belief on current state xF
n .

Simulate forward to get xP
n+1, observe observation y∗n+1.

Update xF
n+1 accordingly.
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Background

Automatic Differentiation

Figure 2:
f(x, y) = x2 + xy+ 2,
f ′(x, y) = (2x+ y, x).
– Figure from https:
//avinashselvam.
medium.com

Evaluates the gradient of a (scalar or vector-valued) computer program
w.r.t. its arguments.

Traverses computational graph (of primitive functions) with chain rule.
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Motivation

Maximum Likelihood Inference is Hard in POMPs

1 Intractable likelihood functions! Bypassed with e.g. simulated
likelihood, likelihood-free inference, particle filters, etc.

2 May not have access to transition densities, only a simulator.

IF2 (Ionides et al., 2015), particle MCMC (Andrieu et al., 2010), only
full-information methods that can deal with this.

3 Significant Monte-Carlo noise in likelihood estimate makes
accurate parameter estimation difficult.
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Motivation

IF2 Plateaus Quickly But Struggles to Find the MLE

Figure 3: Performance of IF2 on King et al. (2008) Dhaka cholera model. Shaded
area represents 0th to 80th percentile, solid line is median of 100 runs. While IF2
makes quick initial progress, it fails to find the MLE.
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Motivation

Hang on, wait a minute!

Original iterated filtering algorithm: (noisy) approximation of score
(Ionides et al., 2006).

Would performing automatic differentiation (AD) on the
likelihood estimate from the particle filter lead to a less noisy
score approximation?

Problem!
But the particle filter has discrete stochastic resampling! How can we
differentiate this?
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Previous Work: AD for Particle Filters

Previous Work

Authors Method

Poyiadjis et al. (2011) Particle approximation of score
O(N2) variance, unbiased

Naesseth et al. (2018) Backprop through vanilla PF
Asymptotic bias

Corenflos et al. (2021) Optimal transport resampling
Consistent, O(J2) runtime

Ścibior and Wood (2021) Stop-gradient trick
Recovers Poyiadjis et al. (2011) with AD

Singh et al. (2022) Fixed-lag smoothing
Need transition densities
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Previous Work: AD for Particle Filters

Our Contributions

New theoretical framework/algorithm/gradient estimator we call
MOP-α.

Gradient estimates of Naesseth et al. (2018) (MOP-0), Poyiadjis et al.
(2011) and Ścibior and Wood (2021) (MOP-1) are special cases.

Does not need transition densities, only a differentiable simulator.

Can optimize a bias-variance tradeoff.

Promising hybrid algorithm, warm-starts gradient descent (using this
estimator) with IF2.

Outperforms IF2 on Cholera model of King et al. (2008).
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Smooth Extensions to the Particle Filter

Intuition

Problem
Want to differentiate through the particle filter. But the particle filter has
discrete stochastic resampling!

Idea

Don’t differentiate ℓ̂(θ) directly, differentiate through a (suitably) reweighted
bootstrap filter.

Particle filter run with state transitions & resampling under ϕ ∈ Θ.

Reweight to evaluate likelihood at nearby θ ∈ Θ (same resampling).

Fix seed to treat particles, weights under ϕ as constants.

Now only need to differentiate through likelihood ratios!
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Smooth Extensions to the Particle Filter

What is this reweighting?

The properly weighted estimate at θ with proposal from ϕ is

L̂(θ) =
N∏

n=1

1

J

J∑
j=1

fYn|Xn
(y∗n|x

P,ϕ
n,j , θ)︸ ︷︷ ︸

Measurement Model

·
fXn|Xn−1

(xP,ϕn,j |x
F,ϕ
n−1,j , θ)

fXn|Xn−1
(xP,ϕn,j |x

F,ϕ
n−1,j , ϕ)

 .

Which we write as

L̂(θ) =
N∏

n=1

1

J

J∑
j=1

fYn|Xn
(y∗n|x

P,ϕ
n,j , ϕ) · sn,j · rn,j︸ ︷︷ ︸

Correction Term

,

where the multiplicative correction terms are

sn,j =
gθn,j

gϕn,j
=

fYn|Xn
(y∗n|x

P,ϕ
n,j ; θ)

fYn|Xn
(y∗n|x

P,ϕ
n,j ;ϕ)︸ ︷︷ ︸

Measurement Model Likelihood Ratios

, rn,j =
fXn|Xn−1

(xP,ϕn,j |x
F,ϕ
n−1,j ; θ)

fXn|Xn−1
(xP,ϕn,j |x

F,ϕ
n−1,j ;ϕ)︸ ︷︷ ︸

Process Model Likelihood Ratios

.
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Smooth Extensions to the Particle Filter

New Problem

Problem
Need likelihood ratios w.r.t. process and measurement models!

Solution
Offload process model derivatives to differentiable simulator.

Run particle filter twice under same seed: one with process model at ϕ,
another with process model at θ. Resample according to ϕ.

Correct only with resampling likelihood ratios.

Introduce additional discounting parameter α for bias-variance tradeoff.
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Smooth Extensions to the Particle Filter

Algorithm: Measurement Off-Policy, MOP-α

1 Run a particle filter once at ϕ to obtain XP,ϕ
n,j , X

F,ϕ
n,j . Fix seed

throughout. Set initial weights wF,θ
0,j = 1/J .

2 At each timestep, propagate weights wP,θ
n,j := (wF,θ

n−1,j)
α.

3 Simulate process model XP,θ
n,j ∼ fXn|Xn−1

(
· |XF

n−1,j ; θ
)
, evaluate

measurement model gθn,j = fYn|Xn
(y∗n|X

P,θ
n,j ; θ), evaluate conditional

likelihood under ϕ, Lϕ
n = 1

J

∑J
m=1 g

ϕ
n,m, as usual.

4 Resample according to ϕ: k1:J ∼ P
(
kj = m

)
∝ gϕn,m.

5 Correct filtering weights: wF,θ
n,j = wP,θ

n,kj
× gθn,kj/g

ϕ
n,kj

.

Special Case: If θ = ϕ, only need to run one particle filter! Set XP,θ
n,j , X

F,θ
n,j

to be copies of the ϕ counterparts, where gradients don’t propagate.
Explains the stop-gradient trick of Ścibior and Wood (2021).
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Smooth Extensions to the Particle Filter

Bias-Variance Tradeoff with α

α balances a tradeoff between:

Maintaining memory of each particle’s ancestral trajectory (most
extreme when α = 1).

Considering only the single-step transition dynamics (when α = 0).

Exponentially-weighted moving average where α controls the
amount of discounting.

Bias small if y∗n+1:N not informative for xn given y∗0:n (Corenflos et al.,
2021).
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Smooth Extensions to the Particle Filter

Bias-Variance Tradeoff with α

Figure 4: Bias-variance tradeoff for gradient estimates at MLE for trend in King
et al. (2008) cholera model. When α = 1, estimate close to unbiased with high
variance. When α = 0, lower variance but biased. MSE seems to be minimized at
α = 0.97.
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Smooth Extensions to the Particle Filter

Guarantee
Proposition (Correctness of MOP-α)

When either α = 1 or θ = ϕ, MOP-α targets the posterior and is unbiased
for the likelihood under θ. When θ is evaluated at ϕ, the likelihood estimate
agrees with the bootstrap filter. Its gradient when α = 1 is the estimate of
Poyiadjis et al. (2011),

1

J

J∑
j=1

∇θ log fY1:N |X0:N
(y∗1:N |xA,F,θ

1:N,j ),

and when α = 0, is the gradient estimator of Naesseth et al. (2018),

1

J

N∑
n=1

J∑
j=1

∇θ log fYn|Xn
(y∗n|x

F,θ
n,j ; θ),

i.e. differentiating through a vanilla particle filter (Ścibior and Wood, 2021).
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Practical Maximum Likelihood Inference

One possible procedure:

Warm-start gradient descent, or some other first or second order
procedure (using the gradient estimate given by MOP-α), with the
output of an initial search of IF2.

Run IF2, aggressively cooling to a fixed learning rate, till search stalls.

Refine this coarse solution with gradient descent.

Iterated Filtering with Automatic Differentiation (IFAD)
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Practical Maximum Likelihood Inference

Convergence Analysis
Proposition (Convergence of IFAD-1)

Consider a variant of IFAD-1 where one stops if the gradient estimate
||g(θn)|| ≤ σϵ. Assume −ℓ is γ-strongly convex, γI ⪯ ∇2

θ(−ℓ) ⪯ ΓI.
σ = 4Γ

(1−β) > 4. Define G as in Assumption 4.
Let H(θn) be a matrix possibly dependent on θn with minimum eigenvalue
always greater than some c > 0. Choose learning rate η and error tolerance
ϵ such that, where β is the Armijo condition hyperparameter,

η ≤ c(1− β)

Γ
, ϵ ≤ c(1− β)

2Γ
||g(θn)||.

Then, with J large enough, the following holds with probability at least
1− δ:

ℓ(θ∗)− ℓ(θn+1) ≤
(
1− ηβ

8γ

9c

)
(ℓ(θ∗)− ℓ(θn))

and the algorithm terminates when ||∇θℓ(θn)|| ≤ (1 + σ)ϵ.
Tan, Hooker & Ionides AD for POMPs STATS 810 23 / 36



Practical Maximum Likelihood Inference

Convergence Analysis

Similar to Roosta-Khorasani and Mahoney (2016), uses concentration
inequalities from Del Moral and Rio (2011).

Gradient stage of IFAD-1 converges linearly to the MLE if:

1 The log-likelihood surface is γ-strongly convex in a neighborhood of the
MLE.

2 The IF2 stage of IFAD successfully reaches a (high-probability) basin of
attraction of the MLE.

Conjecture: This applies to the entirety of IFAD, as IF2 converges very
quickly to a neighborhood of the MLE and behaves a lot like SGD.
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Practical Maximum Likelihood Inference

Runtime

Warm-start:

Initial warm-start "convergence" happens fairly quickly in practice.

Dhaka cholera model of King et al. (2008): 40 iterations, usually
100-200 for global search.

MOP-α:

Gradient takes 3.75x time of pfilter(), in line with cheap gradient
principle (Kakade and Lee, 2019).

Runtime linear, and not quadratic, in number of particles.

Re-implementation in JAX (Bradbury et al., 2018) led to 16x speedup
v.s. pomp package of King et al. (2008).
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Numerical Experiments

Cholera in Bangladesh

Figure 5: Illustration of SIR model from King et al. (2008).

Dhaka model from King et al. (2008), also used in Ionides et al. (2015)
to benchmark IF2.

Stochastic SIR compartmental model with transition uncertainty driven
by Brownian motion.

Force of infection λ(t) modeled with splines for seasonality, etc.
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Numerical Experiments

Results

Method Best Log-Likelihood Rank

IFAD-0.97 -3750.21 1
IFAD-0 −3752.17 2
IFAD-1 −3754.63 3

IF2 (Ours) -3764.10 4
IF2 (Ionides et al. (2015)) -3768.63 5

MOP-1 Alone (100 searches) -3797.38 6

Table 1:
– IFAD performs the best among all methods, finding the MLE.
– Our implementation of IF2 outperforms that of Ionides et al. (2015) but
underperforms IFAD.

Benchmarked IFAD against IF2 on a challenging global search problem.

Performed 44 searches each.
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Numerical Experiments

Results

Figure 6:
–Left: Paired searches from the same starting point.
–Right: Q-Q plot of ranked IFAD searches against ranked IF2 searches.
– IFAD has the edge and manages to find the MLE.
– No IF2 search successfully gets within 7 log-likelihood units of it.
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Numerical Experiments

Results

Figure 7:
– Left: Results of best run out of every ten runs, simulating procedure of running a
few searches and choosing the best one.
– Right: MOP alone drastically underperforms all other methods, failing to get
close to the MLE.
– IF2 warm start necessary in challenging nonconvex and noisy problems.
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Numerical Experiments

Results

Figure 8:
– Solid lines depict the median negative log-likelihood at each iteration.
– Shaded area depicts the best search at any iteration and the 80% percentile.
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Numerical Experiments

Results

Figure 9: Histogram comparison of IFAD (with various α) and IF2. Right is better.
Tan, Hooker & Ionides AD for POMPs STATS 810 32 / 36



Numerical Experiments

Takeaways

1 IF2 converges quickly to a neighborhood of the MLE but fails to find
the MLE.

2 Gradient steps perform better at fine-grained refinement.

3 Performing gradient steps alone without a warm start leads to the
search getting stuck in local minima and saddle points.

4 IFAD combines the best of IF2 and MOP, approaching the MLE quickly
and successfully performing refinement – even on a very difficult global
search problem.
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Conclusions and Future Work

Conclusion

New theoretical framework/algorithm/gradient estimator that
encompasses a few existing gradient estimates.

Promising hybrid algorithm that warm-starts gradient descent (using
this estimator) with IF2.

Outperforms IF2 on Dhaka cholera model of King et al. (2015).
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Conclusions and Future Work

Future Work

MOP-α cannot handle discrete latent states. Maybe likelihood ratios
can get around this.

Convergence rate of IF2 not known, conjecture similar behavior to SGD.

Only gradient descent explored, other methods like Newton’s method,
ADAM, L-BFGS, etc. may perform better.

Extensions to panel and spatiotemporal data, e.g. with a block particle
filter in the lens of Ionides et al. (2022) and Ning and Ionides (2023).

Python counterpart to the popular pomp R package by King et al.
(2016).
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Poyiadjis et al. (2011), particle approximation of the score.
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Naesseth et al. (2018), backpropagate through vanilla particle filter.

Corenflos et al. (2021), optimal transport resampling.

Singh et al. (2022), fixed-lag smoothing.
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Appendix

Previous Work: Issues

Not (yet) compatible with desire for simulation-based inference.

Need modifications to use the bootstrap filter.

Sometimes special cases needed, e.g. transitions factoring into a policy
and deterministic model (Singh et al. (2022)).

Computationally expensive, quadratic in number of particles.

Optimal transport resampling (Corenflos et al. (2021)), marginal particle
filters (Ścibior and Wood (2021)).

High variance, or asymptotically biased.

Either one drops resampling terms and accepts asymptotic bias
(Naesseth et al. (2018)), or has variance quadratic in horizon (Poyiadjis
et al. (2011), Ścibior and Wood (2021))
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Appendix

(Improved) Iterated Filtering (Ionides et al. (2015))

Only (practical) full-information, frequentist method of parameter
estimation in POMPs that does not need transition densities.

Each particle has its own set of parameters.

Particle parameters perturbed at every timestep.

Parameters resampled with their particles according to likelihood.

Treats parameters as augmentations of the state space, evolving
according to a random walk.

Consistent estimates via viewing this as a sequential Bayes map on
the parameter distribution.
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Appendix

When Does IF2 Struggle?

IF2 is great at approaching the MLE quickly!

Performs parameter updates at every timestep, so it does not need to
wait to filter through the entire trajectory before each update.

But struggles at squeezing out the last few units of
log-likelihood.

Especially true in highly nonlinear, nonconvex, and noisy settings, e.g.
disease models.
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Appendix

Assumptions

Assumption (Smooth Neighborhood)

There exists a neighborhood N (ϕ) around any ϕ ∈ Θ where for all
θ ∈ N (ϕ) and almost every ω ∈ Ω, the Monte Carlo estimate of the
likelihood at θ ∈ N (ϕ) with the system evolving according to ϕ conditional
on ω, L̂(θ, ϕ, ω, J), is twice differentiable in θ.

Justification: For suitably nearby θ and ϕ, the resampling indices for
L̂(θ, ϕ, ω, J) and L̂(ϕ, ϕ, ω, J) are the same.

This eliminates any discontinuities from resampling.

For small enough N (ϕ), the likelihood ratios are bounded.

The likelihood only changes by a factor of the likelihood ratios, which
are bounded and smooth in θ if the densities used in the calculation are.
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Appendix

Assumptions
Assumption (Continuity of the Likelihood)

ℓ(θ) proper is continuous in a neighborhood {θ : ℓ(θ) > λ1} for some
λ1 < supφ ℓ(φ).

Assumption (Bounded Measurement Model)

There is an ϵ > 0 with ϵ−1 > fYn|Xn
(yn

∗ | xn; θ) > ϵ for all
1 ≤ n ≤ N, xn ∈ X and θ ∈ Θ.

Assumption (Locally Bounded Derivative)

Let M be an open subset of Ω. There exists some function G(θ) and a
constant G = supθ∈N G(θ) < ∞ such that

∥∇ℓ(θ, ϕ, ω, J)∥2 < G(θ) ≤ G < ∞

for every ϕ ∈ M, θ in smooth neighborhood N (ϕ), and almost every ω ∈ Ω.
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Appendix

Algorithm: Measurement Off-Policy, MOP-α

Figure 10: MOP-α algorithm.
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Appendix

Why did we bother with this?

Lets us work with only a differentiable simulator.

Discounting parameter α helps with a bias-variance tradeoff (explained
later).

Gradients returned by the likelihood estimate

L̂(θ) :=
N∏

n=1

LA,θ,α
n = Lϕ

n

∑J
j=1w

F,θ
n,j∑J

j=1w
P,θ
n,j

have nice properties.
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Appendix

Iterated Filtering with Automatic Differentiation (IFAD)

Figure 11: Warm-starting first/second order iterative optimization with IF2.
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Appendix

Why does this help?

IF2 converges quickly, but struggles with last few log-likelihood units.

Gradient descent gets stuck in saddle points and poor local minima
when the likelihood is nonconvex.

Warm-starting gradient methods with IF2:

Under regularity conditions, the likelihood is well-behaved near the MLE.

Issues with saddle points and local minima alleviated.

Combining these two lets us enjoy the best of both worlds.
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Appendix

Convergence Analysis

Guarantee currently only holds for IFAD-1, as it forms a particle
approximation of the score as in Poyiadjis et al. (2011).

Can be extended if the bias for the gradient estimate given by MOP-α
for α < 1 is small enough.

e.g. α close to 1, or y∗n+1:N uninformative of current state xn given
past and current measurements y∗0:n.

Otherwise, need to handle biased gradient descent.
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Appendix

Cholera in Bangladesh

The transition dynamics follow this series of stochastic differential
equations driven by Brownian motion:

dS = (kϵRk + δ(S −H)− λ(t)S) dt+ dH − (σSI/H)dB,

dI = (λ(t)S − (m+ δ + γ)I) dt+ (σSI/P )dB,

dR1 = (γI − (kϵ+ δ)R1) dt,

...
dRk = (kϵRk−1 − (kϵ+ δ)Rk) dt,
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Appendix

Cholera in Bangladesh

The force of infection, λ(t), is modeled by splines sj ,

λ(t) = exp

βtrend (t− t0) +

6∑
j=1

βjsj(t)

 (I/P ) + exp


6∑

j=1

ωjsj(t)

 ,

where

βj model seasonality in the force of infection.

βtrend models the trend in the force of infection.

ωj represent seasonality of a non-human environmental reservoir of
disease.
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Appendix

Cholera in Bangladesh

The measurement model for observed monthly cholera deaths is given by

Yn ∼ N (Mn, τ
2M2

n),

where Mn is the true number of cholera deaths in that month.
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