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8.1 INTRODUCTION

Disease dynamics are modeled at a population level in order to create a conceptual

framework to think about the spread and prevention of disease, to make forecasts

and policy decisions, and to ask and answer scientific questions concerning disease

mechanisms such as discovering relevant covariates. Population models draw on

scientific understanding of component processes, such as immunity, duration of

infection, and mechanisms of transmission, and investigate how this understanding
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relates to population-level phenomena. There are several compelling reasons to

consider disease processes at this population scale:

1. Anthropogenic change in land use, climate and biodiversity has many poten-

tially large public health impacts (Aguirre et al., 2002). Predicting the future

effects of changes to a complex system is difficult. Retrospective studies of the

relationship between climate and disease prevalence over space (Greene et al.,

2006) and over time (Rodó et al., 2002) can aid predictions and inform pol-

icy decisions (Kovats and Bouma, 2002). A major challenge in retrospective

studies is to disentangle the extrinsic effects of climate or other environmental

drivers from the intrinsic disease dynamics (Koelle and Pascual, 2004).

2. The effectiveness of medical treatment and vaccination strategies for certain

infectious diseases, such as malaria and cholera, is limited by drug resistance,

genetic shift, and poor medical infrastructure in affected regions. This leads to

an emphasis of controlling the disease by behavioral and environmental inter-

ventions. An ability to model the disease dynamics can be used to forecast the

danger of a major epidemic (Thomson et al., 2006), a step toward implementing

effective interventions.

3. Emerging infectious diseases pose a significant public health threat. Many

important emerging infectious diseases are zoonotic, i.e. endemic animal

diseases which cross over to humans. Examples include HIV/AIDS from

chimpanzee and sooty mangabey (Hahn et al., 2000), SARS from bats (Li

et al., 2005) and avian flu (Longini et al., 2005). Epidemics are best prevented

by early containment of outbreaks. Containment strategies may be evaluated
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using population models (Longini et al., 2005). Alternatively, one can attempt

to monitor and control the disease in the animal population to reduce contact

between humans and infected animals. This can be assisted by employing

population models to gain an understanding of the dynamics of the disease in

the animal population.

Since the pioneering work of Ross (1916) and Kermack and McKendrick (1927),

mathematical modeling has been a mainstay of epidemiological theory. It has also

long been recognized that disease models arising in epidemiology are closely related

to population models arising in ecology (Bartlett, 1960): the population dynamics

of an infectious disease arise from the interaction of host and pathogen species in

the context of their environment. This chapter explores some new developments in

statistical inference for nonlinear dynamical systems from time-series data, using

cholera in Bangladesh as a case study.

8.2 DATA ANALYSIS VIA POPULATION MODELS

A mainstay of population modeling is the compartment model, where the population

is divided into groups which can be considered to be homogeneous. The classical SIR

compartment model (Kermack and McKendrick, 1927; Bartlett, 1960) groupsNt in-

dividuals as susceptible(St), infected(It), and recovered or removed(Rt). Exposed

classes, age-structured classes and geographically structured classes are just some of

many possible extensions. Population models may use continuous or discrete time,

take continuous or discrete values, and be stochastic or deterministic. Real world

processes are continuous time, discrete valued, and stochastic. Stochasticity arises
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from demographic noise (variability due to uncertainty of individual outcomes, such

as the number of contacts made with an infected individual) and from environmental

noise (such as variability due to weather, or economic events affecting the whole

population). To a first approximation, demographic stochasticity has variance linear

in population size and environmental stochasticity has variance quadratic in popula-

tion size, though more subtle distinctions can be made (Engen et al., 1998). Models

must also choose to be mechanistic or phenomenological, really a continuous scale

trade-off between incorporating scientific understanding and aiming for a simple

description of relationships observed in data (Ellner et al., 1998). Developing tech-

niques that draw on understanding of population dynamics, while also permitting

statistical inference about unknown model parameters and exploration of relevant

covariates, is a topic of current research interest (Bjørnstad and Grenfell, 2001).

Data are often aggregated over time and space, such as weekly or monthly

counts per region. This has led to the use of discrete-time models for data anal-

ysis. Finkensẗadt and Grenfell (2000) and Koelle and Pascual (2004) represent the

state of the art for data analysis via discrete-time mechanistic modeling, using a

Taylor series to generate a log-linear model with unobserved variables reconstructed

via back-fitting. There are several reasons to prefer continuous-time models:

1. For discrete-time models, the sampling frequency affects the models available

and the interpretation of the resulting parameters. The underlying continuous-

time processes are most naturally modeled in continuous time.

2. Continuous-time modeling facilitates the inclusion of covariates measured at

various frequencies.
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3. Continuous-time disease models have been studied much more extensively

from the mathematical point of view than their discrete-time counterparts (Bai-

ley, 1975; Anderson and May, 1991; Hethcote, 2000; Diekmann and Heester-

beek, 2000). This focus represents both that continuous-time models more

accurately reflect the real properties of the systems and that such models are

relatively easy to analyze. Most data analysis, on the other hand, has made use

of discrete-time formulations, which can be fitted to discretely-sampled data in

a relatively straightforward fashion. However, the dynamics of discrete-time

nonlinear systems are frequently at odds with those of their continuous-time

analogues (May, 1976; Glass et al., 2003), a fact which can complicate the

interpretation of the parameters of discrete-time models.

Strategies appropriate for fitting continuous time models to discretely observed

data include atlas methods (Turchin, 2003), gradient matching (Ellner et al., 2002),

and approaches based on nonlinear forecasting (Kendall et al., 2005). Likelihood

based analysis (frequentist or Bayesian) has largely been overlooked because finding

the likelihood involves the difficult task of integrating out unobserved variables.

Maximum likelihood estimates (MLEs) have some considerable advantages:

1. Statistical efficiency: The MLE is typically efficient (makes good use of limited

data).

2. Transformation invariance: for example, estimates do not depend on whether

the model is written using a log or natural scale.
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3. Asymptotic results: the 2nd derivative of the log likelihood at its maximum

can be used to give approximate standard errors. This means that simulations

to understand variability in estimates are not usually necessary.

4. Model selection: likelihoods are comparable between different models for

the same data. In particular, aχ2 approximation is often appropriate: ifp

parameters are added to a model and the increase in the log likelihood is large

compared to a(1/2)χ2
p random variable then the fit is a statistically significant

improvement.

Bayesian analysis is also attractive, since previous research may be available to

provide an informed prior. Bayesian methods have been used for population models

(Thomas et al., 2005; Clark and Bjørnstad, 2004). For this chapter we consider MLE

methods, but the computational issue of integrating out unobserved variables arises

in a similar way with Bayesian methods.

Evaluation of the likelihood and determination of the conditional distribution of

unobserved variables given data are computationally approachable in a broad class of

time series models known as state space models (SSMs). SSMs have been proposed

as a unifying framework for ecological modeling (Thomas et al., 2005). Likelihood

based inference has been shown to outperform other more ad-hoc statistical model

fitting criteria for population models incorporating process noise and observation error

(de Valpine and Hastings, 2002). The linear, Gaussian SSM (Kalman, 1960) became

fundamental to engineering, for signal processing and control theory (Anderson and

Moore, 1979), and found applications in economics (Harvey, 1989). Early attempts to

handle nonlinear SSMs were plagued by the lack of computational ability to evaluate
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the likelihood, so inference resorted to ad-hoc methods (Anderson and Moore, 1979).

Brillinger et al. (1980) provides an early ecological application of nonlinear SSMs.

The development of Monte Carlo methods for nonlinear SSMs, combined with in-

creases in computational capability, has made likelihood based inference feasible for

increasingly general nonlinear SSMs. This gives the modeler considerable freedom

to write down an appropriate model without undue concern for inferential feasibil-

ity. There are two main approaches to Monte Carlo inference for SSMs: Sequential

Monte Carlo (Gordon et al., 1993; Doucet et al., 2001; Arulampalam et al., 2002)

and Markov Chain Monte Carlo (Shephard and Pitt, 1997). This chapter focuses on

Sequential Monte Carlo (SMC), which is more widely used for SSMs and simpler to

implement. A careful comparison between SMC and Markov Chain Monte Carlo is

still, to the authors’ knowledge, an open problem.

8.3 SEQUENTIAL MONTE CARLO

An SSM is a partially observed Markov process. The unobserved Markov process,

xt, called thestate process, takes values in astate space,X . Theobservation process

yt takes values in anobservation space, Y, andyt is assumed to be conditionally

independent of the past givenxt. Here, we takeX to be<dx andY to be<dy . There

is also a vector of unknown parametersθ ∈ <dθ . We suppose that observations

take place at discrete times,t = 1, . . . , T . We further suppose that all required

densities exist, and we adopt a convention thatf(· | ·) is a generic density which

is then specified by its arguments. We write concatenated observations asy1:t =

(y1, . . . , yt). For the caset = 0, y1:0 is defined to be an empty vector. The properties
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of a state space model are

fθ(xt|x1:t−1, y1:t−1) = fθ(xt|xt−1) (8.1)

fθ(yt|x1:t, y1:t−1) = fθ(yt|xt) (8.2)

The dependence onθ will be written explicitly only when necessary for clarity. In

principle, the assumed Markov structure in (8.1) and (8.2) allows the likelihood,

fθ(y1:T ), to be found recursively via the identities

f(xt|y1:t−1) =
∫
f(xt−1|y1:t−1)f(xt|xt−1) dxt−1, (8.3)

f(xt|y1:t) =
f(xt|y1:t−1)f(yt|xt)∫
f(xt|y1,t−1)f(yt|xt) dxt

. (8.4)

f(yt|y1:t−1) =
∫
f(yt|xt)f(xt|y1:t−1) dxt (8.5)

f(y1:T ) =
T∏

t=1

f(yt|y1:t−1) (8.6)

In practice, this requires solving potentially challenging integrals. Following Kita-

gawa (1987), de Valpine and Hastings (2002) showed how these integrals could

be solved numerically for relatively simple population models. For more complex

models, one may employ an SMC method such as Algorithm 1.
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Algorithm 1. Sequential Monte Carlo (SMC).

Initialize : Let {XF
0,j , j = 1, . . . , J} be a sample draw fromf(x0). TheseJ

realizations are commonly termed “particles”. Each particle will give rise to a

trajectory through the state space with distributionf(xt|y1:t).

FORt = 1 to T

• Move particles according to unconditional state process:

MakeXP
t,j a draw fromf(xt|xt−1=XF

t−1,j). Then{XP
t,j} has approximate

marginal distributionf(xt|y1:t−1). {XP
t,j} is said to solve the prediction

problem at timet.

• Calculate conditional likelihood of new observation:

Estimatef(yt|y1:t−1) by (1/J)
∑J

j=1 f(yt|xt = XP
t,j).

• Prune particles according likelihood given data:

GenerateXF
t,j by resampling from{XP

t,j} with probability proportional to

wj = f(yt|xt=XP
t,j) using Algorithm 2 (below).{XF

t,j} has approximate

marginal distributionf(xt|y1:t). {XF
t,j} is said to solve the filtering problem

at timet.

END FOR

Calculate log likelihood: log f(y1:T ) =
∑T

t=1 log f(yt|y1:t−1).
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Algorithm 2. Systematic Resampling.

Input : J “particles” {XP
t,j , j = 1, . . . , J} with weights {wj =

f(yt|xt=XP
t,j)}

Calculate cumulative sum of normalized weights:

FORj = 1 to J setcj =
(∑j

k=1 wk

)/( ∑J
k=1 wk

)

Resample cumulative sum at intervals of1/J :

Seti = 1 andu ∼ U [0, 1]

FORj = 1 to J

• WHILE (j − u)/J > ci seti = i+ 1

• SetXF
t,j = XP

t,i. This resampling generates a tree structure, whereXF
t,j is

said to descend fromXF
t−1,i.

END FOR

Output : J “particles”{XF
t,j , j = 1, . . . , J}

The reader is referred to Arulampalam et al. (2002); Doucet et al. (2001); Liu

(2001) for extensive discussions of Algorithm 1 and 2, with many possible variations.

There are many ways that Algorithm 1 can be fine-tuned to be more computationally

efficient. A more critical issue, in the authors’ opinion, is how to use the output of

Algorithm 1 for effective inference. Although Algorithm 1 is widely applicable for

calculating the likelihood at a fixed value ofθ, complications arise for both Bayesian

and MLE methods, which must compare likelihoods for different values ofθ.

Bayesian inference might appear straightforward: simply addθ to the state space.

The initial particles are then drawn fromf(x0, θ) and the particle filter will then
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produce a sample fromf(θ|y1:T ). Each particle at timet has exactly the same value

of θ as its ancestor at timet − 1, and the prior distribution onθ is updated via

the SMC algorithm giving particles with successful values ofθ more descendants.

The catch is that the SMC algorithm degenerates when there is no variability in theθ

component of the state process aftert = 0. Heuristically, the particles in SMC evolve

by natural selection according to their plausibility given the data. Particles whoseθ

component are fixed over time are analogous to natural selection without mutation,

which produces only limited scope for evolution. One solution to this is to allow

the parameter to vary slowly with time by adding noise (Kitagawa, 1998). If this

modification to the model is considered unacceptable, Liu and West (2001) showed

how to add noise to the parameters but balance this by simultaneously contracting

the parameter distribution toward its mean. The method of Liu and West (2001) has

been applied to ecological models by Thomas et al. (2005); Newman and Lindley

(2006).

The difficulty for finding the MLE is that the likelihood is calculated with

Monte Carlo error. One useful tool for optimizing functions calculated via Monte Carlo

is the method of common random numbers (Spall, 2003, Section 14.4), which in-

volves fixing the seed of the random number generator. This method requires syn-

chronization of the Monte Carlo randomness, which is not directly applicable to

SMC techniques. General stochastic optimization methods of the Robbins-Monro

type (Robbins and Monro, 1951; Kiefer and Wolfowitz, 1952; Spall, 2003) are not

applicable for problems where there are many unknown parameters and each function

evaluation is a considerable computational expense. The elegant method of Hürzeler

and Künsch (2001) for calculating local likelihood surfaces is also not readily ap-
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plicable to relatively difficult problems—it is more computationally intensive than

standard SMC methods such as Algorithm 1. Ionides et al. (2006) showed how to

find the MLE by taking a limit where the noise, added in a similar way to Kitagawa

(1998), shrinks to zero. This novel method is described in Algorithm 3 and is applied

to a cholera population model in Section 8.4.
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Algorithm 3. MLE via iterated filtering.

Initialize : Selectθhi > θ(1) > θlo to be vectors giving a plausible initial value

and range for the parameters. Select scalars0 < α < 1, C andN .

FORn = 1 toN

• Apply SMC (Algorithm 1) with θ included in the state space as a time-

varying parameter, evolving as

θ0 ∼ Ndθ
(θ(n), CΣn)

θt|θt−1 ∼ Ndθ
(θt−1,Σn) for t = 2, . . . , T,

where the covariance matrixΣn is defined by [Σn]1/2
ii = [(θhi −

θlo)/2
√
T ]i αn−1 and [Σn]ij = 0 for i 6= j. Each “particle” is now a

pair, e.g.(XF
t,j , θ

F
t,j).

• Calculate updated estimate:

θ̂t = (1/J)
J∑

j=1

θF
t,j for 1 ≤ t ≤ T

V1 = (C + 1)Σn

Vt+1 =
( J∑

j=1

(θF
t,j − θ̂t)(θF

t,j − θ̂t)τ
)
/(J − 1) + Σn

for 1 ≤ t ≤ T − 1

θ(n+1) = V1

( T−1∑
t=1

(V −1
t − V −1

t+1) θ̂t + V −1
T θ̂T

)

END FOR

The MLE is estimated aŝθ = θ(N+1)
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Algorithm 3 is appropriate when information about parameters arrives steadily

throughout a time-series. Heuristically, it gains computational efficiency because

the parameter estimate is being constantly updated throughout each iteration. Each

iteration would correspond to one evaluation of the likelihood for a general purpose

optimization algorithm. In Section 8.4,N = 20 orN = 30 iterations are sufficient

to optimize a stochastic function of 13 variables, without availability of analytic

derivatives. This computational efficiency is critical when each iteration takes around

30 minutes to compute.

In certain situations, such as estimating the initial value vectorx0, information

about a parameter does not arrive steadily throughout a time-series. In this case,

Algorithm 3 is not effective. If{xt} is stationary thenx0 can be drawn from the sta-

tionary distribution. If{xt} is not stationary, one can either pick some more arbitrary

distribution forx0 or treatx0 as an unknown parameter (in the frequentist sense). We

choose to do the latter, and estimatex0 by maximum likelihood simultaneously withθ

by applying Algorithm 4, which has a similar theoretical justification to Algorithm 3

(Ionides et al., 2006). The value ofT0 in Algorithm 4 should be as small as possible

such thatyT0+1:T contains negligible additional information aboutx0, beyond that

contained iny1:T0 . This compromise is known as fixed lag smoothing (Anderson and

Moore, 1979).
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Algorithm 4. MLE via iterated filtering, for initial values.

Initialize : Selectxhi
0 > x

(1)
0 > xlo

0 to be vectors giving a plausible initial value

and range for the initial values. Select scalars0 < α < 1, T0 andN .

FORn = 1 toN

• Apply SMC (Algorithm 1) withXF
0,j ∼ Ndx

(x(n)
0 ,Φn) where[Φn]1/2

ii =

[(xhi
0 −xlo

0 )/2]i αn−1 and[Φn]ik = 0 for i 6= k. For each particleXF
t,j , track

label of the corresponding initial value, denoteda(t, j). In the terminology

of Algorithm 2,XF
t,j descends fromXF

0,a(t,j).

• Calculate updated estimate:x(n+1)
0 = (1/J)

∑J
j=1X

F
0,a(T0,j)

END FOR

The MLE is estimated aŝx0 = x
(N+1)
0

Algorithms 3 and 4 are different variations on the same theme of using limit-

ing Bayesian posterior distributions to find maximum likelihood estimates. Both

algorithms can be combined, so that one filtering iteration updates estimates of all

estimated parameters, including initial value parameters.

8.4 MODELING CHOLERA

Cholera is a diarrheal disease endemic to the Ganges delta region (Sack et al.,

2004). Global pandemics have occurred throughout recent history. The current

(7th) pandemic started in 1960 and has seen the O1 serogroup become established

in various locations throughout south Asia, Africa and South America. Cholera is

caused by virulent strains ofVibrio cholerae, a bacterium that can live and grow in
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Fig. 8.1 Compartment model for cholera. Each individual is inS (susceptible),I (infected) or

one of the classesRj (recovered). Transitions toB andDmodel birth and death respectively.

The arrows show possible transitions, with superscripts showing transition rates.

brackish, warm water. Human-to-human transmission can be direct, through contact

with stool from infected individuals, or indirect, via the environment. There is not

a clear distinction between these two paths: we separate them by supposing that

the increase in force of infection depending on the number of infected individuals

is due to human-to-human transmission. The environmental reservoir is taken to be

responsible for the background force of infection (extrapolating to a situation with

no infected humans). A compartment model describing the basic features of disease

transmission is shown diagrammatically in Figure 8.1. Formally, the diagram in

Figure 8.1 corresponds to a set of equations,

dSt = dNBS
t − dNSI

t − dNSD
t + dNRkS

t

dIt = dNSI
t − dN IR1

t − dN ID
t

dR1
t = dN IR1

t − dNR1R2

t − dNR1D
t

...

dRk
t = dNRk−1Rk

t − dNRkS
t − dNRkD

t
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Here, time is measured in months;St is the number of individuals in classS (suscep-

tible) and the infinitesimaldSt is defined such thatSt = S0 +
∫ t

0
dSu. For example,

NSI
t corresponds to the total number of individuals who have passed fromS to I

by time t. Thek recovered classes allow for flexibility in modeling the time from

infection to loss of immunity, at which point an individual becomes newly suscepti-

ble. This temporary immunity, with a duration of 3–10 years, is believed to be a key

feature of the population dynamics of cholera. We use a model developed by Ionides

et al. (2006):

dNSI
t = µtSt dt+ ψtSt dWt (8.7)

µt = βtIt/Pt + w

ψt = eIt/Pt

Here, population sizePt is interpolated from available census data, and is pre-

sumed to be accurately known; seasonal transmissibility is modeled aslog(βt) =

∑5
j=0 bjsj(t) where{sj(t), j = 0, . . . , 5} is a periodic cubic B-spline basis;e

is anenvironmental stochasticityparameter, modeling noise on the environmental

scale (with infinitesimal variance proportional toSt); w corresponds to a non-human

reservoirof disease;βtIt/Pt is human-to-humaninfection;1/γ gives mean time to

recovery;1/r is the mean time to loss of immunity following recovery, withk giving

the shape of this distribution;m andmc are the death rates among uninfected and

infected individuals respectively. The remaining transition equations were modeled
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deterministically:

dN IR1

t = γIt dt; dNRj−1Rj

t = rkRj−1
t dt;

dNRkS
t = rkRk

t dt; dNSD
t = mSt dt;

dN ID
t = mcIt dt; dNRjD

t = mRj
t dt;

dNBS
t = dPt + dNSD

t + dN ID
t +

∑k
j=1dN

RjD
t

(8.8)

Defining Ct = N ID
t − N ID

t−1 =
∫ t

t−1
dN ID

s , the number of cholera mortalities

between monthly observation times, the data on observed mortality were modeled

conditional onCt as yt ∼ N [ρCt, ρ(1 − ρ)Ct + τ2ρ2C2
t ] with reporting rateρ.

The variance componentρ(1− ρ)Ct models demographic stochasticity via binomial

sampling variation. Environmental stochasticity is modeled viaτ2ρ2C2
t , which

dominates demographic variability for largeCt and is found to be appropriate when

fitting (8.7) and (8.8) to data. The dominance of environmental stochasticity has been

assumed implicitly in previous analyses of similar data, by modeling additive noise of

varianceτ2 in log(ρCt) (Finkensẗadt and Grenfell, 2000; Koelle and Pascual, 2004).

Demographic variability is non-negligible whenCt is small, and can be included in

our framework without adding any additional parameters.

Continuous-state population models, such as the model given by (8.7) and (8.8),

are more convenient for data analysis than discrete-state population models. Theoret-

ical results and simulation studies of population models often resort to demographic

(Poisson) variability, using the rates in Figure 8.1 to define a continuous-time Markov

chain. Apart from the inherent appropriateness of discrete populations, the Markov

chain approach has the advantage that no extra parameters, beyond the rates, are

needed to describe the stochasticity. However, demographic stochasticity alone is

not always sufficient to describe observed variations in data; for cholera, demo-

graphic stochasticity is entirely inadequate. If extra variability has to be introduced,
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stochastic differential equations (SDEs) provide a simple way to do this. SDEs are

a natural extension to the ordinary differential equation (ODE) systems already used

for describing population dynamics. Other examples of the use of SDEs to provide

a framework for modeling and data analysis include Kendall (1974); Brillinger and

Stewart (1998); Brillinger et al. (2002); Ionides et al. (2004). There are several mis-

conceptions about SDEs that explain why they are not currently more widely used

for modeling. These are listed below, with refutations:

1. The theory of SDEs is inaccessible and obscure. However, numerical solution

of SDEs is now well established (Kloeden and Platen, 1999; Higham, 2001).

This allows development and exploration of models that would be hard to

investigate analytically. In particular, application of the inference methodology

in Algorithms 3 and 4 for the model in (8.7) and (8.8) requires only numerical

solution of the system of SDEs.

2. There may be little reason to think that Gaussian white noise is a plausible

stochastic driver for the system under investigation. Supplying random co-

efficients to an ODE or Markov chain adds lower frequency “colored noise.”

However, most practical time series models, such as the ARMA framework

(Shumway and Stoffer, 2000), use white noise as the basic building block.

This noise is often modeled as Gaussian, for convenience, and the data may

sometimes be transformed to increase the plausibility of this assumption. Solu-

tions to SDEs driven by Gaussian white noise include almost all non-Gaussian

continuous time, continuous sample path Markov processes (Øksendal, 1998).
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Smooth, low frequency noise can be modeled by adding white noise to a

derivative of the process of interest.

3. Much discussion has occurred in theoretical modeling literature concerning

different possible interpretations of an SDE. The two most popular interpreta-

tions are the It̂o and Stratonovich solutions (Øksendal, 1998). The distinction,

involving the exact way the SDE is solved as a limit of finite sums, should

have little scientific relevance. Meaningful scientific conclusions should not

depend on the choice of interpretation of SDE (Ionides et al., 2004). Numerical

solution is most straightforward for the Itô solution, so that is the one adopted

here.

8.4.1 Fitting structural models to cholera data

Maximizing a nonconvex function of more than a few variables is seldom routine,

especially when the function is evaluated by Monte Carlo methods. Algorithm 3

provides a way to leverage the special structure of an SSM for optimization, but

diagnostic checks are necessary before one has confidence in the results. Beyond

the standard approach of trying various initial values (θ(1), θlo andθhi) one should

assess the choice of the two variablesα andC for Algorithm 3. If α is too small,

the rapid decrease in step size in Algorithm 3 may leave the algorithm stranded,

unable to reach the maximum. This is analogous to excessively rapid cooling in

simulated annealing (Spall, 2003). Ifα is too large, insufficient cooling will occur

within a reasonable computation time. These issues can be diagnosed by plotting

θ(n) againstn for several values ofα andθ(1), looking for consistent convergence.C
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is a dimensionless constant controlling the initial dispersion of the parameter values,

relative to their random perturbations through time. IfC is too small, the algorithm

converges slowly. IfC is too large, the algorithm is less stable and converges

erratically. This can be assessed by the same type of convergence plot used forα, or

by the observation that a good choice ofC is one which makesVt fairly stable as a

function oft.

The likelihood surface near the convergence point,θ̂, can be further examined by

“sliced likelihood” plots. Settingλ(θ) = log fθ(y1:T ), the sliced likelihood forθi

plotsλ(θ̂ + cδi) againstθ̂i + c, whereδi is a vector of zeros with a one in theith

position. If θ̂ is at (or near) the maximum of each sliced likelihood plot thenθ̂ is

(approximately) a local maximum ofλ(θ). Computing sliced likelihoods requires

moderate computational effort, linear in the dimension ofθ. A smoothed fit (as

suggested by Ionides, 2005) is made to the sliced log likelihood, becauseλ(θ̂ + cδi)

is calculated with a Monte Carlo error. Figure 8.2 shows a convergence and sliced

likelihood plot for a simulation study, presented in Ionides et al. (2006), using the

cholera model in (8.7) and (8.8). The deviation between the MLE and the true

parameter value is due to the finite length (50 years) of the simulated dataset. In

some generality, the MLE for state space models is consistent and asymptotically

normally distributed (Jensen and Petersen, 1999).

Sliced likelihoods can be used to generate standard errors, since calculatingλ(θ̂+

cδi) involves findinglog fθ̂+cδi
(yt|y1:t−1). Regressinglog fθ̂+cδi

(yt|y1:t−1) on c

gives an estimate of(∂/∂θi) log fθ̂(yt|y1:t−1), giving rise to an estimate of the
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Fig. 8.2 (A, B) Examples of convergence plots for a simulation from (8.7) and (8.8) with

four different starting points, validating the convergence of Algorithms 3 withα = 0.9 and

C = 20. The dotted parabolic line corresponds to a sliced likelihood throughθ̂. (C, D)

Corresponding closeups of the sliced likelihood. The dashed vertical line is atθ̂ and the

solid vertical line is at the true value ofθ. The simulation was carried out withρ = 0.43;

e = 0.289; b0 = −1.48; b1 = 2.42; b2 = 0.02; b3 = −0.98; b4 = 0.02; b5 = 3.02;

τ2 = 0.02; w = 2.5 × 10−6; mc = 1.19; γ = 1; k = 4; 1/r = 120; 1/m = 600.

The last four of these parameters were treated as known, and the remaining parameters were

estimated, using Algorithm 3 withJ = 9000.
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Fig. 8.3 Profile log likelihoodλ(p)(b4)) for the August seasonal parameter. The log like-

lihood was maximized over all parameters excludingb4 (circles) and was then smoothed

(dashed line) using non-parametric regression (Ionides, 2005; Cleveland et al., 1993). The

dotted lines show the construction of an approximate 95% confidence interval, given by

{b4 : 2[λ(p)(b̂4) − λ(p)(b4)] < χ2
0.95(1)} whereχ2

0.95(1) is the 0.95 quantile of aχ2

random variable with one degree of freedom andb̂4 = argmaxλ(p)(b4).

observed Fisher information

[ÎF ]ij =
T∑

t=1

(∂/∂θi) log fθ(yt|y1:t−1)(∂/∂θj) log fθ(yt|y1:t−1) (8.9)

where the derivatives are evaluated atθ = θ̂. This leads to a corresponding estimate

Î−1
F for the covariance matrix of̂θ.

A superior way to find confidence intervals is via a profile likelihood (Barndorff-

Nielsen and Cox, 1994). Ifθ is partitioned into two componentsζ and η then

the profile log likelihood ofη is defined (Barndorff-Nielsen and Cox, 1994) by

λ(p)(η) = supζ λ(ζ, η). The optimization required for the profile likelihood can be
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carried out using Algorithm 3. Calculating the profile likelihood for each parameter

therefore requires approximatelyN times the computational effort of the sliced

likelihood (typically,N is between 20 and 30). The optimization also introduces

additional Monte Carlo variability over a simple likelihood evaluation. Figure 8.3

shows the profile likelihood for a parameter of the model in (8.7) and (8.8). This

parameter was selected because the profile likelihood confidence interval constructed

in Figure 8.3, of width 0.27, was considerably different from the approximation

using (8.9), of width 0.10. This rather large discrepancy arose because the quadratic

approximation in (8.9) is overly optimistic when some nonlinear combination of

the parameters is poorly estimable. The extra computation required to calculate a

profile likelihood is evidently worthwhile for a parameter of particular interest. The

quadratic approximation can be calculated more routinely, to get a general idea of

the scale of uncertainty.

The model in (8.7) and (8.8) was fitted to historical data for Dhaka, Bangladesh

(Bouma and Pascual, 2001; Rodó et al., 2002; Koelle and Pascual, 2004), shown in

Figure 8.4A. Our resulting estimate of the seasonal transmissibilityβt is shown in

Figure 8.4B. Observed mortality is seen to have two seasonal peaks which appear

later than the peaks in transmissibility. The winter dip in mortality has been ascribed

to reduced environmental viability ofV. choleraein colder temperatures. The early

January local minimum in transmissibility is consistent with the early January mini-

mum in mean temperature in Dhaka. The summer dip in mortality has been ascribed

to dilution of V. choleraedue to monsoon rainfall. The monsoon season in Dhaka

is May to September, with greatest average rainfall in July. Fitting (8.7) and (8.8),

D R A F T February 9, 2007, 2:41pm D R A F T



174 MODELING DISEASE DYNAMICS

C
ho

le
ra

 m
or

ta
lit

y

1890 1900 1910 1920 1930 1940

0
20

00
40

00

A

C
ho

le
ra

 m
or

ta
lit

y

0
40

0
80

0
12

00

J F M A M J J A S O N D

1.
5

2
2.

5
3

3.
5

4
β t

B

Fig. 8.4 (A) Cholera mortality for Dhaka, Bangladesh, from 1891 to 1940. (B) Monthly

averages of Dhaka cholera mortality (boxes) and the seasonal transmissibilityβt (dotted line)

from fitting (8.7) and (8.8).
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Fig. 8.5 Sample autocorrelation function for the standardized residuals when fitting (8.7) and

(8.8) to the data in Figure 8.4.

the transmissibility is seen to decrease too soon to be explained fully by rainfall.

Snow-melt from the Himalayas is one candidate to explain this discrepancy.

Investigating residuals is a routine diagnostic check in time series and regres-

sion analysis. The most basic residuals to consider for SSMs are the standardized

prediction residuals,

ut(θ̂) = [Varθ̂(yt|y1:t−1)]−1/2
(
yt − Eθ̂(yt|y1:t−1)

)
,

though there are other possibilities (Ionides et al., 2006; Durbin and Koopman, 2001).

Checking whether the residuals are approximately uncorrelated is a way to test the

goodness of fit of the model. Residuals also have an important role in the search for

covariates. Inasmuch as the model successfully captures the intrinsic dynamics of

the disease, the residuals are left with the system noise plus signal from the extrinsic

variables, such as climate. From this point of view, features that the intrinsic model
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cannot capture are as important as those it can! A more flexible model might fit the

data better, but only by explaining variation that in fact has some extrinsic origin.

The next step after identifying covariates is to include them in the model. This is not

necessarily an easy task — even explaining seasonality can be a challenge (Pascual

and Dobson, 2005). For example, both rainfall and drought can initiate cholera

epidemics. The low frequency component of residuals from a time series model fit to

cholera data has been found to match various plausible environmental drivers, such

as rainfall, river discharge and El Niño indices (Koelle et al., 2005). Fitting the model

of (8.7) and (8.8) results in less than perfectly white residuals (see Figure 8.5). The

residuals nevertheless give evidence of increased cholera infection in Dhaka after the

monsoon during El Nĩno conditions (Ionides et al., 2006), and this association is not

evident from the original time series. How best to include environmental covariates

in a mechanistic model is a topic for future investigation. However, the methodology

in Section 8.3 both provides a tool to identify covariates and a flexible framework for

including them in a mechanistic way.

8.5 CONCLUSION

Six key areas requiring further development for time series analysis of population

data were identified by Bjørnstad and Grenfell (2001). They may be summarized

as follows: (i) including measurement error in mechanistic models;(ii) mechanistic

modeling of environmental forcing;(iii) ecologically realistic continuous time mod-

els; (iv) reconstructing unobserved variables;(v) identifying interactions; and(vi)

spatio-temporal modeling. The cholera modeling example in Section 8.4 demon-
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strates that the SSM approach in Section 8.3 can be used to address(i)-(iv). In

addition, likelihood based model comparison then provides an approach to(v). In

principle, one can write down a spatial-temporal SSM to address(vi). In practice,

the dimension of the state space typically scales linearly with the number of spa-

tial locations considered, and high dimensional state spaces increase the numerical

burden on the SMC method. For large spatial-temporal problems, such as data as-

similation in atmospheric and oceanographic science, SMC is not feasible. Related

techniques have been developed for data assimilation (Evensen and van Leeuwen,

1996; Houtekamer and Mitchell, 2001), employing an ensemble of numerical solu-

tions of a spatial-temporal model to approximate the conditional distribution given

data. Alternatively, spatial-temporal variability can be incorporated through random

effect models (Wikle, 2003; Wikle et al., 1998; Berliner et al., 2000). More progress

is necessary before SMC techniques can be routinely applied to spatial-temporal data.

However, SMC provides an effective and flexible tool for partially observed stochas-

tic nonlinear dynamical systems of moderate dimension, allowing freedom to develop

models based on scientific principles rather than on methodological constraints.
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Finkensẗadt, B. F. and Grenfell, B. T. (2000). Time series modelling of childhood

diseases: A dynamical systems approach.Applied Statistics, 49:187–205.

Glass, K., Xia, Y., and Grenfell, B. T. (2003). Interpreting time-series analyses for

continuous-time biological models-measles as a case study.Journal of Theoretical

Biology, 223:19–25.

Gordon, N., Salmond, D. J., and Smith, A. F. M. (1993). Novel approach

to nonlinear/non-Gaussian Bayesian state estimation.IEE Proceedings–F,

140(2):107–113.

Greene, S. K., Ionides, E. L., and Wilson, M. L. (2006). Patterns of influenza-

associated mortality among US elderly by geographic region and virus subtype,

1968–1998.American Journal of Epidemiology, pre-published on-line.

Hahn, B. H., Shaw, G. M., de Cock, K. M., and Sharp, P. M. (2000). AIDS as a

zoonosis: scientific and public health implications.Science, 287:607–614.

Harvey, A. C. (1989).Forecasting, Structural Time Series Models and the Kalman

Filter. Cambridge University Press.

Hethcote, H. W. (2000). The mathematics of infectious diseases.SIAM Rev., 42:599–

653.

Higham, D. J. (2001). An algorithmic introduction to numerical simulation of stochas-

tic differential equations.SIAM Rev., 43:525–546.

Houtekamer, P. L. and Mitchell, H. L. (2001). Data assimilation using an ensemble

Kalman filter technique.Monthly Weather Review, 129:123–137.

D R A F T February 9, 2007, 2:41pm D R A F T



182 BIBLIOGRAPHY

Hürzeler, M. and K̈unsch, H. R. (2001). Approximating and maximising the like-

lihood for a general state-space model. In Doucet, A., de Freitas, N., and Gor-

don, N. J., editors,Sequential Monte Carlo Methods in Practice, pages 159–175.

Springer, New York.

Ionides, E. L. (2005). Maximum smoothed likelihood estimation.Statistica Sinica,

15:1003–1014.

Ionides, E. L., Bret́o, C., and King, A. A. (2006). Inference for nonlinear dynamical

systems. Proceedings of the National Academy of Sciences, USA, 103:18438–

18443.

Ionides, E. L., Fang, K. S., Isseroff, R. R., and Oster, G. F. (2004). Stochastic models

for cell motion and taxis.Journal of Mathematical Biology, 48:23–37.

Jensen, J. L. and Petersen, N. V. (1999). Asymptotic normality of the maximum

likelihood estimator in state space models.Annals of Statistics, 27:514–535.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.

Journal of Basic Engineering, 82:35–45.

Kendall, B. E., Ellner, S. P., McCauley, E., Wood, S. N., Briggs, C. J., Murdoch,

W. M., and Turchin, P. (2005). Population cycles in the pine looper moth: Dynam-

ical tests of mechanistic hypotheses.Ecological Monographs, 75(2):259–276.

Kendall, D. G. (1974). Pole-seeking Brownian motion and bird navigation.Journal

of the Royal Statistical Society, Ser. B, 36:365–417.

D R A F T February 9, 2007, 2:41pm D R A F T



BIBLIOGRAPHY 183

Kermack, W. O. and McKendrick, A. G. (1927). A contribution to the mathematical

theory of epidemics.Proc. R. Soc. Lond. A, 115:700–721.

Kiefer, J. and Wolfowitz, J. (1952). Stochastic estimation of the maximum of a

regression function.Annals of Mathematical Statistics, 23:462–466.

Kitagawa, G. (1987). Non-Gaussian state-space modelling of non-stationary time

series.Journal of the American Statistical Association, 82:1032–1063.

Kitagawa, G. (1998). A self-organising state-space model.Journal of the American

Statistical Association, 93:1203–1215.

Kloeden, P. E. and Platen, E. (1999).Numerical Soluion of Stochastic Differential

Equations. Springer, New York, 3rd edition.

Koelle, K. and Pascual, M. (2004). Disentangling extrinsic from intrinsic factors in

disease dynamics: A nonlinear time series approach with an application to cholera.

American Naturalist, 163:901–913.

Koelle, K., Rod́o, X., Pascual, M., Yunus, M., and Mostafa, G. (2005). Refractory

periods and climate forcing in cholera dynamics.Nature, 436:696–700.

Kovats, R. S. and Bouma, M. (2002). Retrospective studies: Analogue approaches

to describing climate variability and health. In Martens, P. and McMichael, A. J.,

editors,Environmental Change, Climate and Health, pages 144–171. Cambridge

University Press, Cambridge.

Li, W., Shi, Z., Yu, M., Ren, W., et al. (2005). Bats are natural reservoirs of SARS-like

coronaviruses.Science, 310:676–679.

D R A F T February 9, 2007, 2:41pm D R A F T



184 BIBLIOGRAPHY

Liu, J. and West, M. (2001). Combining parameter and state estimation in simulation-

based filtering. In Doucet, A., de Freitas, N., and Gordon, N. J., editors,Sequential

Monte Carlo Methods in Practice, pages 197–224. Springer, New York.

Liu, J. S. (2001).Monte Carlo Strategies in Scientific Computing. Springer, New

York.

Longini, I. M., Nizam, A., Xu, S., Hanshaoworakul, K. W., Cummings, D. A. T., and

Halloran, M. E. (2005). Containing pandemic influenza at the source.Science,

309:1083–1087.

May, R. M. (1976). Simple mathematical models with very complicated dynamics.

Nature, 261:459–467.

Newman, K. B. and Lindley, S. T. (2006). Accounting for demographic and environ-

mental stochasticity, observation error and parameter uncertainty in fish population

dynamic models.To appear in North American Journal of Fisheries Management.

Øksendal, B. (1998).Stochastic Differential Equations. Springer, New York, 5th

edition.

Pascual, M. and Dobson, A. (2005). Seasonal patterns of infectious diseases.PLoS

Medicine, 2:18–20.

Robbins, H. and Monro, S. (1951). A stochastic approximation method.Annals of

Mathematical Statistics, 22:400–407.

D R A F T February 9, 2007, 2:41pm D R A F T



BIBLIOGRAPHY 185

Rod́o, X., Pascual, M., Fuchs, G., and Faruque, A. S. G. (2002). ENSO and cholera:

A nonstationary link related to climate change?Proceedings of the National

Academy of Sciences, USA, 99:12901–12906.

Ross, R. (1916). An application of the theory of probabilities to the study of a

priori pathometry. part i.Proceedings of the Royal Society of London, Series A,

92(638):204–230.

Sack, D. A., Sack, R. B., Nair, G. B., and Siddique, A. K. (2004). Cholera.Lancet,

363:223–233.

Shephard, N. and Pitt, M. K. (1997). Likelihood analysis of non-Gaussian measure-

ment time series.Biometrika, 84:653–667.

Shumway, R. H. and Stoffer, D. S. (2000).Time Series Analysis and Its Applications.

Springer, New York.

Spall, J. C. (2003).Introduction to Stochastic Search and Optimization. Wiley,

Hoboken.

Thomas, L., Buckland, S. T., Newman, K. B., and Harwood, J. (2005). A unified

framework for modelling wildlife population dynamics.Aust. N.Z. J. Stat., 47:19–

34.

Thomson, M. C., Doblas-Reyes, F. J., Mason, S. J., Hagedorn, S. J., Phindela, T.,

Morse, A. P., and Palmer, T. N. (2006). Malaria early warnings based on seasonal

climate forecasts from multi-model ensembles.Nature, 439:576–579.

D R A F T February 9, 2007, 2:41pm D R A F T



186 BIBLIOGRAPHY

Turchin, P. (2003).Complex Population Dynamics – A Theoretical/Empirical Syn-

thesis. Princeton Univ. Press.

Wikle, C. K. (2003). Hierarchical models in environmental science.International

Statistical Review, 71:181–199.

Wikle, C. K., Berliner, L. M., and Cressie, N. (1998). Hierarchical Bayesian space-

time models.Environmental and Ecological Statistics, 5:117–154.

D R A F T February 9, 2007, 2:41pm D R A F T


