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Abstract

Diffusion processes observed partially, typically at discrete timepoints and possibly with
observation error, arise when constructing stochastic models in continuous time. This paper
introduces a novel Sequential Monte Carlo approach to inference for partially observed diffusion
processes. The method of Sequential Monte Carlo provides an alternative to Markov Chain
Monte Carlo methods, and has proven to be effective in complex models at the cutting edge
of scientific research. The new methodology enables filtering, prediction, smoothing and pa-
rameter estimation in certain nonlinear models for which these are difficult or impossible using
existing Monte Carlo methods. As a byproduct, a new method is presented for inference from
discretely observed diffusion processes. A novel measure of filter accuracy is proposed, and used
to highlight strengths and weaknesses of the methods.

Key Words: Discrete time sampling; Inference for stochastic processes; nonlinear diffusion;
particle filter; stochastic differential equation.

1 Introduction

This paper develops new Sequential Monte Carlo techniques for partially observed diffusion pro-
cesses. A partially observed Markov process is called a state space model. State space models
have applications in many areas, including signal processing (Anderson and Moore, 1979), time se-
ries analysis (Shumway and Stoffer, 2000; Durbin and Koopman, 2001), economics (Harvey, 1989),
finance (Shephard and Pitt, 1997), cell biology (Ionides et al., 2003), meteorology (Evensen and
van Leeuwen, 1996), neuroscience (Brown et al., 1998), and various others (Doucet et al., 2001,
Section IV). It appears that real world phenomena are often well modeled by some Markov process
with sufficiently rich state space, perhaps constructed according to physical or chemical or eco-
nomic principles, about which we can make only noisy or incomplete observations. In almost all
the examples above, the Markov process can be considered as a continuous time process with con-
tinuous sample paths, and with observations occurring at discrete time points. We call such models
partially observed diffusion processes. The widespread use of partially observed diffusion processes,
and the desire to analyze ever more complex and general models, means that new methods for
inference have potentially many important applications.

Introducing some notation, a state space model consists of an unobserved Markov process, xt,
called the state process, and an observed process, yt = g(xt, t), called the observation process. Here,
xt takes values in a state space, X , and yt takes values in an observation space, Y. To allow for noisy
observations, we may wish to write yt = g(xt, ηt, t) where ηt is a Markov process independent of xt.
Formally, we can then take (xt, ηt) as the state process. We suppose that the observations occur
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at discrete timepoints, t = 1, . . . , T . When X is finite or countable, a state space model is called a
hidden Markov model (Lander and Green, 1987; Rabiner, 1989). The case of linear Gaussian state
space models was considered in the seminal work of Kalman (1960). We are concerned with the
situation in which xt is an an Itô diffusion in Rm, defined as the solution to a stochastic differential
equation (SDE)

dxt = µ(xt, t, θ)dt + σ(xt, t, θ)dWt (1)

with σ an m ×m matrix and {Wt} a Brownian motion in Rm. Here, θ is a unknown parameter
vector for which inference is required. For brevity and simplicity, dependence on θ and t will not
always be written explicitly. We assume that µ and σ are sufficiently regular to guarantee that
(1) has a unique solution (Oksendal, 1998, Theorem 5.2.1). We suppose that yt lies in Rn, with
observations at discrete times t = 1, . . . , T given by

yt = g (xt, ηt, θ, t) , (2)

where {ηt, t = 1, . . . , T}, is an independent sequence that may be interpreted as measurement noise.
This general setting includes observation processes taking a discrete set of possible values. As a
concrete example, the reader may like to bear in mind a linear Gaussian observation equation,

yt = Cxt + D + ηt, (3)

with ηt ∼ N(0, ττ ′), C an m× n matrix and D a vector.
Section 2 discusses Sequential Monte Carlo methods for state space models. A new Sequential

Monte Carlo technique, which we call a conditional particle filter, is proposed in Section 2.1. Sec-
tion 2.4 introduces a new measure of filter accuracy, which is used to compare the effectiveness of
competing filters. In Section 3 we show how to apply the conditional particle filter (CPF) in the
context of partially observed diffusion processes. Consideration of numerical methods also leads us
to propose a linearized conditional particle filter (LCPF) in Section 3.4.

Perhaps the main motivation for developing CPF and LCPF is that, as Section 3 reveals, they are
well suited for some particular characteristics of partially observed diffusion processes. Transition
densities of nonlinear diffusions and conditional nonlinear diffusions are hard to calculate, however
diffusion processes are easy to simulate from. Likelihood ratios are also easy to calculate. In
addition, nonlinear diffusions are similar to linear, Gaussian processes locally in space and time.
The example of Section 3.5 demonstrates that CPF can compare favorably with existing filtering
methods for partially observed diffusion processes, particularly with low observation noise. LCPF,
while being less compuationally intensive than CPF, is found to be considerably more accurate than
an extended Kalman filter. Remarkably, CPF can (with a little extra care) handle the important
situation of singular noise. This is investigated in Section 3.6.

2 Sequential Monte Carlo Analysis of State Space Models

We first introduce some more notation, which is convenient for discussions of discrete time filtering.
A vector of the observations is written as as y1,T = (y1, . . . , yT )′. We suppose that xt has a
conditional transition density f(xt|xt−1), and that yt, conditional on y1,t−1 and x1,t, has density
f(yt|y1,t−1, x1,t) = f(yt|xt). We adopt a convention that f(· | ·) is a generic density which is
then specified by its arguments. One typically wishes to evaluate, or sample from, the conditional
densities f(xt|y1,t), f(xt+1|y1,t) or f(xt|y1,T ). These are known as the filtering, prediction and
smoothing problems, respectively.
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When trying to simulate a realization x1,T = (x1, . . . , xT )′ from a high dimensional density
fT (x1,T ), it may help to work sequentially by drawing x1,t from some density ft(x1,t) and then
updating x1,t to generate a draw from ft+1(x1,t+1). This approach has been used for computer
simulation of long-chain polymers since the 1950’s and was surveyed by Liu (2001). We refer to such
a technique as Sequential Monte Carlo (SMC). Sequential Monte Carlo provides an alternative to
Markov Chain Monte Carlo methods, and has proven useful for many computationally challenging
applications (Doucet et al., 2001). When SMC is used as a fundamental tool for hypothesis testing,
parameter estimation, graphical representations and model diagnostics for a class of models, we
describe this as an SMC analysis. Many researchers independently discovered that SMC is readily
applicable to state space models (Crisan and Lyons, 1997; Del Moral, 1996; Gordon et al., 1993;
Isard and Blake, 1996; Kitagawa, 1996).

A standard SMC approach, which we will call the particle filter (PF), involves recursively solving
the prediction and filtering equations. These are given respectively by

f(xt|y1,t−1) =
∫

f(xt−1|y1,t−1)f(xt|xt−1) dxt−1, (4)

f(xt|y1,t) =
f(xt|y1,t−1)f(yt|xt)∫

f(xt|y1,t−1)f(yt|xt) dxt
. (5)

We look for a solution in the Monte Carlo sense of producing a collection of random variables, or
“particles,” whose marginal densities approximate f(xt|y1,t−1) and f(xt|y1,t). Suppose {XF

t−1,j , j =
1, . . . , J} has an empirical distribution approximating f(xt−1|y1,t−1). Using (4), each “particle”
XF

t−1,j can be moved according to the transition density of the state space to give a particle XP
t,j

whose marginal distribution approximates the prediction density, f(xt|y1,t−1). This Monte Carlo
analogue to (4) is called the prediction step. The filtering step then involves setting {XF

t,j} to be a
sample drawn with replacement from {XP

t,j} with probabilities proportional to

wj = f(yt|xt=XP
t,j).

This is an importance sampling procedure (Ripley, 1987) with sampling weights {ωj}. For initial-
ization, XP

1,j is drawn from a density f(x1). Some variations on the standard PF algorithm are
discussed in Section 2.2 and (Doucet et al., 2001). Particle filter algorithms have the difficulty that
they work poorly when the observation error is small. Heuristically the weights, {wj}, should then
have high variance since most of the prediction steps will be inconsistent with the new observa-
tion. In the extreme case, where the density f(xt|y1,t) exists on a region of lower dimension than
f(xt|y1,t−1), wj is zero with probability one, and the algorithm breaks down. This will happen, for
example, if ττ ′ in (3) is not invertible. Section 3.6 investigates this situation.

2.1 A New SMC Approach - the Conditional Particle Filter (CPF)

The prediction step in PF can be replaced by a more general proposal step (Liu, 2001). Pitt and
Shepard (2001) allowed the proposal step to depend on the observation process and called such
methods adaptive particle filters. Our approach to remedy the difficulties experienced by existing
SMC algorithms for low or singular measurement error is to develop a new adaptive particle filter.
Critically, in Section 3, we show how to evaluate this filter for systems such as (1) and (2). We
replace (4) and (5) by a proposal equation

fp(xt−1, xt|y1,t) = f(xt−1|y1,t−1)f(xt|xt−1, yt), (6)

3



and a filtering equation

f(xt|y1,t) ∝
∫

fp(xt−1, xt|y1,t−1)f(yt|xt−1) dxt−1. (7)

This algorithm is based on the identity

f(xt|y1,t) =
∫

f(xt−1|y1,t−1)f(yt|xt−1)
f(yt|y1,t−1)

f(xt|xt−1, yt) dxt−1.

The proposal step involves constructing pairs (XF
t−1,j , X

P
t,j) where XP

t,j is drawn from f(xt|yt, xt−1=XF
t−1,j).

We then assign weight wj to XP
t,j given by

wj = f(yt|xt−1=XF
t−1,j). (8)

The filtering step, as for PF, is to construct {XF
t,j} by resampling with replacement from {XP

t,j}
with weights wj , or by following other schemes discussed in Section 2.2. The key to the algorithm
is that, for the class of models including (1) and (2), these proposal and filtering steps can be solved
(in a Monte Carlo sense).

We call the algorithm specified by (6), (7) and (8) a conditional particle filter (CPF). We
postpone to Section 3 the issue of computing CPF for systems such as (1) and (2). In Sections 2.2
and 2.3 we discuss some topics arising in any SMC analysis. We discover that CPF, considered
as a special case of SMC, has some unusual and useful properties. In Section 2.4 we consider the
comparison and evaluation of filters, a discussion necessary for the examples of Secion 3.

2.2 Weights and Resampling

Manipulating weights in importance sampling type methods, such as SMC, can be done following
the principle of properly weighted samples (Liu, 2001). A weighted sample {(Xi, wi), i = 1, . . . , N}
is said to be properly weighted for a density f(x) if, for some constant C and any square integrable
function h(x),

E[h(Xi)wi] = C

∫
h(x)f(x) dx.

For any set of positive resampling weights {ai}, sampling with replacement from {(Xi, wi/ai)} with
weights ai results in a new (approximately) proper sample for f(x) (Rubin, 1987). The resampling
weights originally used for SMC in state space models were ai = wi (Kitagawa, 1996; Gordon et al.,
1993). These weights prune heavily any Xi with small weight wi, allowing computation at future
steps to concentrate on “successful” particles. In practice, lighter pruning, say with ai =

√
wi, may

be preferable (Liu, 2001). In fact, for the CPF and LCPF algorithms proposed here, resampling
may be unnecessary. Heuristically, the reason for this is that for these algorithms the particles can
be expected to have mixing properties. In the original SMC each particle x̃t moves around the
state space according to the unconditional state Markov transition density f(xt|xt−1). Pruning is
then required to remove particles whose location is unlikely given the observation process. In CPF,
a particle x̂t moves according to a conditional Markov transition density f(xt|xt−1, yt). If mixing
occurs, then the distribution of x̂t should not stray too far from the filtering distribution f(xt|y1,t).
Mixing properties of similar conditional processes have been studied by (Bickel and Ritov, 1996;
Bickel et al., 1998; Jensen and Petersen, 1999). The proper weight of x̂t for f(xt|y1,t), the filtering
weight, is wf,t =

∏t
i=1 vi where vt = f(yt|xt−1=x̂t−1). When t is not small, wf,t typically has

high variance. However, if x̂t is mixing then the recent weights will be more relevant, so truncated
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weights wf,t,k =
∏t

i=t−k vi can be used. A similar issue arises in smoothing, where (x̂t, ws,t) is
properly weighted for f(xt|y1,T ) with smoothing weights and truncated smoothing weights given
by ws,t =

∏T
i=1 vi, and ws,t,k =

∏t+k
i=t−k vi. Although these truncated weights somewhat resemble

previous methods using truncated smoothers of (Anderson and Moore, 1979, Sections 7.3 and 9.6)
and Kitagawa and Sato (2001), this particular method appears new. Note that it is only the
weights and not the particle process that is truncated. A reasonable value of k can be selected by
bias/variance trade-off considerations. A large k increases the Monte Carlo variance of an estimated
quantity (such as the mean or quantiles of the conditional state process, or the log likelihood of
the observations). A small k introduces bias due to the truncation. There may be room for
improvement on truncation as a way of taking advantage of mixing. Filtering weights of the form
wf,t = exp

{∑t
i=1 ρt−i log vi

}
might be considered, for example.

2.3 Parameter Estimation

The likelihood may be calculated via f(y1,T ) =
∏T

t=1f(yt|y1,t−1) using a Monte Carlo approximation
to the integral

f(yt|y1,t−1) =
∫

f(yt|xt−1)f(xt−1|y1,t−1) dxt−1.

Remembering that there is a parameter, θ, implicit in all the model equations, inference for θ may be
carried out using the usual Bayesian or frequentist methods. When no resampling is carried out the
Monte Carlo variation can be dealt with by fixing the seed of the random number generator, finding
estimates θ̂1, . . . , θ̂L at L different seed values, and combining these estimates. In the presence of
resampling, the branching of the particles depends on θ. One can then sample the likelihood with
Monte Carlo error at different parameter values, a relatively simple approach which was given a
theoretical justification by Ionides (2003b). Alternatively, one can adopt an importance sampling
strategy, or use a Monte Carlo EM algorithms (Hürzeler and Künsch, 2001).

Parameter estimation may also be carried out by adding θ to the state space (Anderson and
Moore, 1979). This method is more successful if θ is a dynamic parameter, i.e., θ = θt where
θt is itself a diffusion process. If θ does not change with time, say θ = θt = θ0 with some prior
distribution f(θ0), then the filtering estimate f(θt|y1,t) is formally a Bayesian posterior distribution
for θ0 given y1,t. However, as pointed out in Section 2.2, CPF and all other SMC methods perform
poorly when the conditional process θ̂t with transition density f(θt|θt−1 = θ̂t−1, yt) is slowly mixing.
In the fixed parameter case, θ̂t = θ̂0 so θ̂t does not “mix” at all. The θ components of the particles
are then stuck at their initial positions, and only their weights change with time.

2.4 Comparing Filters

Traditional criteria for comparing filters are the mean square errors of point estimates of the center
(mean or median) of the prediction or filtering distributions (Doucet et al., 2001). For nonlinear
models these criteria are not necessarily appropriate, particularly when the filtering or prediction
densities are multimodal. It would clearly be desirable for a filter to be able to estimate well the
whole of the conditional distribution. To this end, we propose a new method for evaluating filters
via the accuracy, A, defined by

A2 = E

[
1
T

T∑

t=1

(λ̂t − λt)2
]

(9)

where λt = log f(yt|y1,t−1) and λ̂t is the filter estimate of λt. Although an inaccurate filter might
provide a reasonable point estimate of the state process or a parameter, an accurate filter (with
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a small value of A) has to capture the whole conditional distribution of xt given y1,t−1. Accuracy
concerns the ability to approximate the log likelihood, which is particularly relevant to likelihood
based (Bayesian or frequentist) inference. Accuracy has a natural scale: Differences in the log
likelihood of order 1 are of interest for inference, so a filter with A < 1/

√
T may be considered

satisfactory for likelihood based inference. Accuracy also provides a one dimensional measure, even
for a vector valued process. The accuracy of a filter may be hard to evaluate, because λt is not
known unless we already have a perfect filter, with A = 0. For the particular nonlinear models of
Section 3.5, λt can be found exactly. In general, λt will be estimated from a filter known to be
accurate on standard problems. For parameter estimation, a filter has to estimate the likelihood
not only under the true model but also in a neighborhood around it. It seems reasonable to suppose
that accuracy for a known model is indicative of accuracy for similar models. If the observation
process is stationary or converges to stationarity then, for large t and T or more formally in a limit,
we can replace (9) by

A2 = E[(λ̂t − λt)2].

This can be broken down by a bias/variance decomposition, as A2 = b2 + V , where b = E[λ̂t − λt]
and V = Var(λ̂t − λt). For a Monte Carlo filter, define

A2 = E[EMC [(λ̂t − λt)2]].

where EMC is the Monte Carlo expectation. Writing λ∗t = EMC [λ̂t], the bias/variance decomposi-
tion is now A2 = b2+V +M , where the bias is b = E[λ∗t −λt], the filter variance is V = Var(λ∗t −λt)
and the Monte Carlo variance is M = VarMC(λ̂t − λ∗t ).

In practice, the accuracy of a filter has to be estimated. Suppose K realizations of a Monte
Carlo filter are available, for a stationary state space model, giving rise to estimated likelihood
processes {λ̂tk : t = 1, . . . , T, k = 1, . . . , K}. Then we can write

λ̂tk = λt + b + εt + ηtk,

where E[εt] = E[ηtk] = 0, and εt is independent of ηtk. The filter variance is V = Var(εt) and the
Monte Carlo variance is M = Var(ηtk). A random effects model (Venables and Ripley, 2002) could
be used to estimate b, M and V , though the standard errors will be too low unless one allows for
serial correlation over time. Here we propose simpler unbiased estimators,

λ̂∗t = (1/K)
∑

k λ̂tk, M̂ = 1
T (K−1)

∑
t,k(λ̂tk − λ̂∗t )2,

b̂ = (1/T )
∑

t λ̂∗t , V̂ = 1
TK−1

∑
t,k(λ̂tk − b̂)2 − M̂.

These estimates are repeated for many independent realizations of the state space model, to get
improved estimates with standard errors.

3 Inference for Partially Observed Diffusion Processes

Inference for discretely observed diffusion processes (when yt = xt at discrete timepoints t =
1, . . . , T ) has been studied via likelihood based methods (Roberts and Stramer, 2001; Elerian et al.,
2001), via estimating equations (Sorensen, 1997) and nonparametrically (Fan and Zhang, 2003;
Jiang and Knight, 1997). Financial modeling has been a major motivating example. Partially
but continuously observed nonlinear diffusions are the domain of the Wong-Zakai and Kallianpur-
Striebel equations of filtering theory (Oksendal, 1998, Chapter 6). Numerical methods for contin-
uous observation nonlinear filtering are poorly developed, and methods based on SMC may have a
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role to play (Kloeden and Platen, 1999, Section 6.6). An SMC approach to the partially observed
diffusion process (1) and (2), for the special case of a linear Gaussian state process, was developed
in Shephard and Pitt (1997), motivated by a stochastic volatility financial model.

In this section, we show how to implement the CPF algorithm of Section 2.1 for the partial ob-
servation system (1) and (2). To implement CPF one has to simulate from f(xt|xt−1, yt), discussed
in Section 3.1, and to evaluate f(yt|xt−1), discussed in Section 3.2. Section 3.3 discusses relevant
numerical methods for SDEs. Carrying out CPF using a crude numerical solution gives rise to an
algorithm of interest in its own right, presented in Section 3.4, which we call a linearized conditional
particle filter (LCPF). Section 3.5 describes a test problem demonstrating the effectiveness of CPF.
Section 3.6 shows that CPF also provides a novel approach for discretely observed diffusions.

3.1 Simulating Conditional Diffusions

Conditioning the diffusion {xt} on x0 and y1 results in a conditional diffusion {x̂t} = {xt|x0, y1}.
The SDE for x̂t may be written as dx̂t = µ̂(x̂t)dt + σ(x̂t)dWt, for 0 ≤ t ≤ 1. Here σ(·) is the same
as in (1) and µ̂(·) is not in general easy to calculate. Let x̃t be an approximation to x̂t, given by
the SDE

dx̃t = µ̃(x̃t)dt + σ(x̃t)dWt.

Write P , P̂ and P̃ for the laws of {xt|x0}, {x̂t} and {x̃t} respectively, for 0 ≤ t ≤ 1. To carry
out importance sampling from P̂ using trial distribution P̃ it is sufficient to be able to calculate
dP̃/dP , which is proportional to dP̃/dP̂ . Thus, although µ̃ should be similar to µ̂ in order to have a
computationally efficient simulation, it is not necessary to know µ̂. This property is the functional
form of the familiar identity f(x|y) = f(x, y)/f(y) ∝ f(x, y). The constant of proportionality
depends on y, but is not required for importance sampling.

Here, we use an approximation, x̃t, which is constructed using a local linearization, following
Ionides (2003a). Similar approximations were used by Roberts and Stramer (2001) and Ozaki
(1992). The requirement on g in (2) is that one can make a local linear, Gaussian approximation
to ηt and yt. The better this approximation, the more computationally efficient the Monte Carlo
scheme should be. The observation process does not have to be real valued, it could be categorical
or integer valued. In some situations of practical interest, dP̂ /dP does not exist, the most important
case being where ττ ′ in (3) is singular or zero. This possibility is dealt with in Section 3.6.

3.2 Estimating the Conditional Density

An analogous situation to calculating the likelihood in a state space model via the methods of
Section 2.1, for a bivariate random variable (X, Y ) with density f(x, y), is to estimate f(y) using

f(y) ≈ f̂(y) =
1
K

K∑

k=1

f(y|x=Xk) (10)

where Xk is a sample from density f(x). If Xk is instead drawn from another density g(x) we have
an estimate

f(y) ≈ f̂(y) =
1
K

K∑

k=1

f(x=Xk)
g(x=Xk)

. (11)

The density g(x) can be chosen to depend on the observation, y, and so the ideal choice would be
g(x) = f(x|y), in which case Var(f̂(y)) = 0. In the analogy with nonlinear state space models,
f(x|y) is not a density that can usually be calculated explicitly, though it can be sampled from
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using the methods of Section 3.1. We then take g(x) to be a linearized approximation to f(x|y).
Using the notation of Section 3.1, we can rewrite (11) in the form required in (8), as

f(y1|x0) = EP̃

[
f(y1|x1=x̃1)

dP

dP̃
{x̃t}

]
≈ 1

K

K∑

k=1

f(y1|x1=x̃
(k)
1 )

dP

dP̃
{x̃(k)

t } (12)

where {x̃(k)
t } is a sample from P̃ . Conveniently, the same sample from P̃ can be used to compute

(12) as is used for importance sampling from {x̂t} in Section 3.1.

3.3 Numerical Methods

For a practical implementation of CPF the necessary sample paths and stochastic integrals must
be discretely approximated. Appropriate numerical methods are discussed by Kloeden and Platen
(1999). Different algorithms arise for weak and strong approximations. Here, we use strong approx-
imations in order to guarantee the correct joint distributions of solutions to varying SDEs driven
by the same Brownian motion. The Euler scheme, or order 0.5 strong Taylor approximation, to

dxt = µ(xt, t)dt + σ(xt, t)dWt

is given by xt+ε = xt + µ(xt, t)ε + σ(xt, t)∆εWt, where ∆εWt = Wt+ε −Wt. Set P to be the law of
{xt, 0 ≤ t ≤ 1} and P̃ to be the law of the solution {x̃t, 0 ≤ t ≤ 1} to

dx̃t = µ̃(x̃t, t)dt + σ(x̃t, t)dWt.

The likelihood ratio evaluated at {ξt, 0 ≤ t ≤ 1}, denoted dP̃
dP {ξt}, can be approximated by

exp

{
1
2ε

N−1∑

n=0

[2 (µ̃n − µn)′
(
σnσ′n

)−1 ∆(1/N)ξ(n/N) + µ′n(σnσ′n)−1µn − µ̃′n(σnσ′n)−1µ̃n]

}
, (13)

where µn = µ(ξ(n/N), n/N), etc. Note that (13) is both a Riemann sum approximation to the
integral given by the Girsanov theorem and the exact likelihood ratio of the Euler approximation.
For higher order Taylor approximations, these two quantities will usually be different. The exact
likelihood ratio of the approximation appears more reasonable to use, though this would be hard
to find for more complex schemes. The exception to this is the Milstein scheme (order 1.0 strong
Taylor approximation) in the special case where Wt and xt are real-valued or when σ(·) satisfies
the commutativity property of Kloeden and Platen (1999, Section 10.3).

3.4 The Linearized Conditional Particle Filter (LCPF)

The Euler scheme of Section 3.3 with ε = 1 corresponds to a local Gaussian approximation which
may be written as

xt|xt−1 ∼ N (A(xt−1),Φ(xt−1)) . (14)

A corresponding local Gaussian observation equation is

yt|xt, xt−1 ∼ N (C(xt−1)xt + D(xt−1),Ψ(xt−1)) . (15)

The LCPF consists of applying the CPF recursions in (6), (7) and (8) to the system specified by
(14) and (15). We can not sample from the proposal density (6) and evaluate wj in (8) using
standard methods for the multivariate normal distribution. The model given by (14) and (15)
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Figure 1: (a) Prediction density, f(xt|y1,t−1), for (16) and (17) when the prediction median is
xp

t = 3 (solid line) and xp
t = 0 (dashed line), when τ = 1 and t is large. This is calculated by

transforming the analytically tractable model given by (18) and (19). (b) A realization from (16)
and (17), with T = 100. Transformed observations, h(yt), are shown as points. The filtering means,
estimating the unobserved process xt, are shown superimposed for EKF, PF, LCPF and CPF. The
transformed Kalman filter for estimating zt is also shown. All the methods agree closely on their
point estimates of the unobserved process (the lines are indistinguishable).

somewhat resembles the linearization employed in the Extended Kalman filter (EKF), the widely
used and fairly successful technique of linearizing a nonlinear model and then applying the Kalman
filter (Anderson and Moore, 1979). The EKF is not an exact filter for the linearized model, in
the sense that it does not find the true conditional distribution of the state process. In particular,
the EKF estimate of the conditional distribution is necessarily unimodal. The LCPF, on the other
hand, gives an exact solution, apart from Monte Carlo error, for the locally Gaussian system of (14)
and (15). This system can be viewed as an approximation to a diffusion process of interest, but
also has some relevance in its own right: In phenomenological modeling of financial or engineering
systems, the underlying continuous time model may be a heuristic that can be discarded once it
has been used to motivate a discrete time model.

The observation equation (15) has the interesting feature that C, D and Ψ can depend on xt−1.
This useful fact arises from (6) and (7), and has the consequence that the filtering weights are
f(yt|xt−1) rather than the usual PF weights of f(yt|xt). This is convenient since f(yt|xt) may be
poorly behaved when some linear combination of components of xt can be observed with little or
no error, whereas f(yt|xt−1) includes extra variation from the evolution of the state space which
may push the distribution away from singularity. The author is not aware of previous work on
methods closely resembling LCPF.
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3.5 An Example

For a simple numerical example, consider a one dimensional nonlinear filtering problem for which
an exact closed form filter exists, namely

dxt = [−αh−1(xt)h′(h−1(xt)) +
1
2
h′′(h−1(xt))]dt + h′(h−1(xt))dWt (16)

yt = h−1(xt) + ηt, ηt ∼ N(0, τ2) (17)

where h(·) has an inverse h−1(·), a derivative h′(x) = dh/dx and a second derivative h′′(x). In this
section only, h′ does not represent the transpose of h. If xt = h(zt) then zt and yt form a linear
Gaussian system

dzt = −αztdt + dWt (18)
yt = zt + ηt (19)

The likelihood of y1,T can be found using the Kalman filter, if the linear representation in (18) and
(19) is known. We demonstrate approximating this likelihood using (16) and (17) with an extended
Kalman filter (EKF), particle filter (PF), particle Kalman filter (LCPF) and conditional particle
filter (CPF). Here we consider the transformation

x = h(z) = [(|z|+ 1)2 − 1]sgn(z)

where sgn(z) = {1 if z > 0,−1 if z < 0}. This transform was chosen as it is a relatively simple
differentiable, unbounded, nonlinear function with a differentiable, unbounded inverse. It leads to
long tailed distributions and to a peak in the conditional density f(xt|y1,t) at xt = 0 (see Fig. 1(a)).
Using the inverse of this transform would give short tails and a bimodal stationary distribution for
xt.

Table 1 compares four filters, using the accuracy measure developed in Section 2.4. It shows
that CPF is the most accurate filter in this situation, followed by PF, LCPF and finally EKF.
The differences between the filters detected by the accuracy score are primarily in the tails of the
conditional distributions. This is displayed graphically in Fig. 1(b), where the conditional means
are seen to be indistinguishable for the different filters. The filter variance of EKF is large, because
the conditional state distribution is not well approximated by a Gaussian (see Fig. 1(a)). If, say,
T = 100 then A

√
T > 1 for EKF, and so EKF does not produce a reliable estimate of the log

likelihood of the observations. The particle filter, PF, has a relatively high Monte Carlo error,√
M , especially when the observation error, τ , becomes small. On the other hand,

√
M decreases

with smaller τ for LCPF and CPF. The filter error,
√

V , which is interpreted as the error after
averaging over many replications of a Monte Carlo filter, is larger for each filter when τ = 0.25. The
techniques introduced in Section 3.6 for τ = 0 can, in principle, be adapted improve the accuracy
of CPF for small τ .

3.6 When There is No Measurement Error

With no measurement error, ηt = 0, the system (1) and (3) becomes

dxt = µ(xt)dt + σ(xt)dWt (20)
yt = Cxt, t = 1, 2, . . . T. (21)

This case requires special attention because the law of xt given y1,t will not have a density with
respect to Lebesgue measure on Rm, but instead on the linear space {x : Cx = yt} (recalling that
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τ b× 102
√

V × 102
√

M × 102 A× 102

EKF 1 -3.32 25.1 n/a 25.4
LCPF 1 -1.62 15.5 4.67 16.4

PF 1 -0.45 3.26 8.54 9.27
CPF 1 -0.16 3.94 3.99 5.67
EKF 0.25 -8.1 42.7 n/a 43.9
LCPF 0.25 -5.3 30.7 2.94 31.8

PF 0.25 -2.52 13.7 21.7 29.8
CPF 0.25 -0.82 9.78 3.56 10.5

Table 1: Bias, b, filter error,
√

V , Monte Carlo error,
√

M, and accuracy, A. Calculated by
simulation for (16) and (17), with parameter settings given below, for the conditional particle filter
(CPF), linearized conditional particle filter (LCPF), particle filter (PF) and extended Kalman filter
(EKF). Simulation errors are in the last digit presented.

Parameter Description Required for Value
Np # of Particles PF, LCPF, CPF 200
Nt # of Steps per Observation for PF, CPF 5

Numerical Solution of SDE
Nf # of lags used for filtering (Sec. 2.2) LCPF, CPF 3
Nr # of Trials for Importance Resampling CPF 10
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xt ∈ Rm, yt ∈ Rn, and supposing that σσ′ is invertible). A situation of particular interest is C = I,
the identity matrix, in which case the model is called a discretely observed diffusion. Many methods
have been suggested for discretely observed diffusions (Elerian et al., 2001, and references theirin),
motivated by applications in economics and finance. The framework considered here provides some
fresh insights and new methodology. An algorithm that can handle no measurement error may
also be expected to deal with small measurement error, so studying this case helps to explain why
CPF can out-perform PF. It also leads to a technique for further improvement of CPF for low or
singular noise.

The standard particle filter (PF), described in Section 2.1, does not work for ηt = 0 since
f(yt|xt = XP

t,j) = 0 with probability 1. The extended Kalman filter (EKF) and linearized con-
ditional particle filter (LCPF) function as usual. The conditional particle filter (CPF) can be
applied, but some extra care is required. Let P be the law of {xt|x0}, for t ∈ [0, 1], and P̂ the law
of {xt|x0, Cx1 = y1}, for t ∈ [0, 1]. In this case, dP/dP̂ does not exist, since Novikov’s condition
for Girsanov’s theorem fails to apply (Oksendal, 1998, Theorem 8.6.5). A way around this problem
is to define Pδ and P̂δ as the laws of xt and x̂t restricted to t ∈ [0, 1− δ]. Now dPδ/dP̂δ does exist,
and so

f(y1|x0) = EP̂δ

[
f(y1|x1−δ=x̂1−δ)

dPδ

dP̂δ

{x̂t}
]

. (22)

For CPF we simulate from a law P̃ close to P̂ and estimate f(y1|x0) using

f(y1|x0) = EP̃δ

[
f(y1|x1−δ=x̃1−δ)

dPδ

dP̃δ

{x̃t}
]

. (23)

In the examples below we see that as long as P̃ is close to P̂ the product of the two terms
f(y1|x1−δ=x̃1−δ) and dPδ/P̃δ in (23) is of order (1/

√
δ) ×

√
δ for typical sample paths. A small

value of δ contributes numerical instability, at a slow rate of 1/
√

δ, while fortunately adding rel-
atively little Monte Carlo variation since the numerical instabilities cancel. The identification of
this phenomenon (which the author found surprising), opens up the possibility of using CPF for
singular measurement error distributions, and in particular for discretely observed diffusions. We
will see, in Examples 1 and 2 below, that δ can be chosen sufficiently small that f(yt|xt−δ=x̃t−δ)
has a good linear Gaussian approximation, without causing numerical instabilities or high Monte
Carlo variance.

Example 1. (Brownian bridge). Consider the one dimensional system xt = Wt and y1 = x1,
which is a case of (20) and (21). Supposing that x0 = y1 = 0, the conditional process of x̂t is a
Brownian bridge, with SDE dx̂t = x̂t(1− t)−1dt + dWt. Then,

dPδ

dP̂δ

(ξ) = exp
{

2
∫ 1−δ

0

ξt dξt

1− t
+

∫ 1−δ

0

ξ2
t

(1− t)2
dt

}
. (24)

As δ approaches 0, there are numerical difficulties evaluating the right hand side of (22), since
f(y1|x1−δ) is approximately the density of a N(x1−δ, δ) variable. Thus for typical sample paths
under P̂δ, f(y1|x1−δ=x̂1−δ) is of order 1/

√
δ. Novikov’s condition, in this example, concerns the

random variable

νδ(x̂) =
1
2

∫ 1−δ

0

x̂2
t

(1− t)2
dt.

The condition fails because limδ→0 EP̂ [exp{νδ(x̂)}] = ∞. Conditional on νδ, in this example, dPδ/

dP̃δ has the same distribution as exp{√2νδZ − νδ}, where Z ∼ N(0, 1). Keeping track of how νδ

increases as δ approaches 0 may help to choose a reasonable value of δ.
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Nt f̂(y1|x0) dPδ/dP̃δ f(y1|x̃1−δ) νδ(x̃) δ

5 0.399(0.216) 1.00(2.63) 0.57(0.28) 0.32(0.37) 0.2
10 0.399(0.235) 0.92(3.68) 0.79(0.40) 0.64(0.67) 0.1
25 0.396(0.248) 0.83(8.60) 1.24(0.64) 1.09(1.05) 0.04
50 0.398(0.251) 0.68(18.0) 1.75(0.91) 1.41(1.26) 0.02

Table 2: Monte Carlo estimates, f̂(y1|x0), of f(y1|x0) using CPF for a Brownian bridge with
δ = 1/Nt. The corresponding Monte Carlo standard deviations are given in parentheses. Based on
a simulation study with sample size 104.

Method Nt δ
√

V × 102
√

M × 102 A× 102

EKF n/a n/a 61 n/a 62
CPF 5 0.2 13.8 4.51 14.6
CPF 10 0.1 7.62 5.05 9.21
CPF 10 0.2 10.2 3.76 10.9
CPF 20 0.05 4.12 5.48 6.90
CPF 20 0.1 5.07 4.23 6.63
CPF 20 0.2 8.63 3.33 9.32

Table 3: Comparing EKF with CPF for the nonlinear diffusion in (16), observed discretely with
no measurement error. The bias, b, was always small and negative, and is not reported. For CPF,
Nr = 200. Setting Nr = 800 results in indistinguishable b and

√
V , and halves

√
M (not reported).

The computational effort is proportional to Nt×Nr. CPF provides a marked improvement on EKF
(which here is simply a local linearization of the diffusion process), even for modest values of Nt

and Nr. Results are by simulation, with simulation error in the last digit presented.

A test problem is to calculate f(y1=0|x0=0) by using (23), the correct answer being 1/
√

2π =
0.3989. Here x̃t is taken to be an Euler approximation to the Brownian bridge x̂t, based on
discretizing [0, 1] into Nt equal intervals and setting δ = 1/Nt (formally, x̃t is the diffusion process
with piecewise constant coefficients corresponding to this Euler approximation). Table 2 shows that
the SD of the estimate of f(y1|x0) increases remarkably slowly as δ becomes small. The importance
weights, dPδ/dP̃δ have a very long tailed distribution for small δ, but the large values of dPδ/dP̃δ

match small values of f(y1=0|x1−δ=x̃1−δ). Since the observed mean of dPδ/dP̃δ is less than one
for small δ, the extreme tail of the distribution is not being sampled here. However, the estimate
f̂(y1|x0) of f(y1|x0) still performs well for small δ.

Note that in this example f̂(y1|x0) is unbiased, since the numerical solution of the SDE for xt

is exact in the sense that the Euler method for Brownian motion gives correct finite dimensional
distributions. This reminds us that the bias is due to the error in the numerical solution for xt, not
in the approximation of x̂t by x̃t. For the Brownian bridge, x̂t, the Euler solution is not exact.

Example 2. (A Nonlinear Diffusion). For a slightly more challenging example, we consider the
nonlinear diffusion (16) observed discretely with no measurement error. Some results are presented
in Table 3. The filter error,

√
V , decreases as Nt increases and as δ decreases. The Monte Carlo

error,
√

M , increases as δ decreases, but decreases proportional to (Nr)−1/2 as the number of Monte
Carlo replications, Nr, increases. The possible values of δ for this numerical implementation are
integer multiples of 1/Nt. Notice that taking δ = 1/Nt is not necessarily the best choice.
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4 Discussion

We have introduced two new filtering algorithms for the important class of models which we call
partially observed diffusion processes. The explanation for why the conditional particle filter (CPF)
can be effective for partially observed diffusions is that we have developed good methods to simulate
from f(xt|xt−1, yt) and to evaluate f(yt|xt−1). These methods, presented in Section 3, are based on
a local Gaussian approximation to the state process, guaranteed if the state process is a diffusion
process. The observation process can be non-Gaussian. In situations where CPF algorithms can
be constructed, they have some desirable properties. In Sections 3.5 and 3.6 we saw that CPF
algorithms can handle small or singular observation noise. In Section 2.2 we saw that little or
no resampling may be required for CPF. Resampling is undesirable since it adds Monte Carlo
variability. Also, an algorithm with little or no resampling is particularly suitable for parallel
computation. Future work will attempt to increase out understanding of how to take advantage of
mixing properties of the CPF weights, following the discussion in Section 2.2. The simple method
implemented here, truncation at a reasonable lag, was effective on the test problems presented.

Since CPF may be considered as a special case of SMC, many strategies invented for fine-tuning
other SMC algorithms (Doucet et al., 2001) may also be applicable to CPF. A considerable reduction
in Monte Carlo variation may be possible by applying smoothing techniques, if f(xt|y1,t) and/or
f(yt+1|xt) are sufficiently smooth as functions of xt. This idea was investigated for unconditional
particle filters by Stavropoulos and Titterington (2001). Considerable computational gains may
also be available for partially linear/Gaussian systems. This occurs where the state process can
be split into two components, xt = (x(1)

t , x
(2)
t ), and x

(1)
t given xt−1 and x

(2)
t is conditionally linear

and Gaussian. Investigations of unconditional particle filtering in this situation include (Liu et al.,
2001) and (Murphy and Russell, 2001).

For modeling of turbulence, financial markets and motion of bacterial cells there is some interest
in removing the requirement that xt has continuous sample paths, by allowing dWt in (1) to be the
increment process for a Lévy process rather than Brownian motion (Barndorff-Nielsen et al., 2001).
The methods developed here are not immediately applicable to SDEs driven by Lévy processes,
but may be a step in the right direction.

A possible generalization is that the state evolution equation and observation equation can be
allowed to depend on previous observations, as in the conditional Gaussian filter (Anderson and
Moore, 1979). State space methods also extend readily to unequally spaced observations, and
similar methods apply for continuous time observations (Oksendal, 1998, Chapter 6).

We have outlined many possible refinements of CPF. However, the basic algorithm of (6) and
(7), together with the techniques developed in Section 3, are already enough to provide a fairly
simple approach that can be effective for nonlinear filtering problems that are difficult to solve by
previous Monte Carlo strategies.
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