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Abstract—Brain Machine Interfaces (BMIs) are emerging
as an important research area in clinical therapy. A large
range of potential BMI control signals can be found in the
brain. In increasing order of volume of brain tissue being
sampled, these signal includes recordings of electric discharges
from multi unit activity (MUA), summed population activity
of thousands of neurons via local field potentials (LFPs), and
electrical activity recorded from either the surface of the brain
via electrocorticograms (ECoGs) or the surface of the scalp
via electroencephalograms (EEGs). While each of these signals
have been studied separately, it has been difficult to compare
the potential that each signal has for general prosthetic control
across studies. Information theory has been proposed as an
abstract measurement to bridge this gap, however the maximum
information rates of any experiment is limited by the parame-
ters defined by that experiment (e.g. inter-trial interval length,
number of targets). Here we propose a different measure of
information, which we call information capacity, which measures
the maximum possible information rate that a signal can provide.
An advantage of measuring information capacity is that it can
readily be compared between different signals and different tasks.
We show how to calculate information capacity making linear
Gaussian assumptions, and we discuss more general possibilities.
We present a case study involving a rat BMI task involving either
MUA or LFP signals.

I. INTRODUCTION

A brain machine interface (BMI) is a communication chan-
nel between the brain and the external environment. The
channel typically interfaces with the brain via electrodes on
or near the surface of the brain, or implanted in the brain.
The channel interfaces with the external environment via a
prosthesis, which may be a physical device or a computer
monitor. A motivation for studying BMIs is the possibility of
developing prostheses to overcome various physical handicaps.
The flow of information may be in either direction along
the channel. For an output BMI (appropriate to spinal injury
or ALS patients) the aim is to extract intention from the
brain to control a prosthesis. The reverse scenario is an input
BMI (appropriate for overcoming hearing loss or blindness).
Here we consider output BMIs — the input case has similar
considerations but is beyond the scope of this work.

The theory of Shannon information [1], [2] provides a way
to evaluate the effectiveness of a communication channel.
Previous work has used Shannon information to measure
ability of a BMI at specific tasks [3] — we call this task
information. This work develops a task-independent measure
which we call information capacity (IC). Information capacity
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is related to the theoretical channel capacity of the BMI. Infor-
mation capacity is a particularly useful concept for comparing
different BMIs, possibly applied to different tasks.

Section II(A) gives an overview of Shannon information
and defines our measure of information capacity. Section III
presents a case study where information capacity is used
to compare different modalities of brain interfaces for a rat
BMI. Section IV discusses other situations where information
capacity may be a useful quantity to consider. A general cal-
culation of information capacity under Gaussian assumptions
is relegated to an appendix.

II. METHODS

A. An information-theoretic framework for BMIs

In the classical communication setting [1, Chapter 8], a
source message x; drawn from a known probability distribu-
tion is to be sent through a communication channel. The source
is encoded by some known function to give the transmitted
signal g(z') where x = {x,, s <t}, the history of z;. The
communication channel adds noise, giving rise to the received
signal 3y, = g(x") 4+ q;. v is then decoded to give Z;. Possibly
one is more interested in decoding some function of z;, say
z; = h(zP). This is estimated by 2, which might be the
plug-in estimator 2, = h(i!) or some other function of y;.
The information rate between z; and y; is the supremum of
possible rates of error-free transmission when x; encodes a
digital signal. The channel capacity is the supremum of the
information rate over choices of ¢(.) in some appropriate class
of functions.

In the BMI setting, x; quantifies the intention of the subject.
This is a difficult quantity to study, and cannot usually be mea-
sured directly. In animal experiments, the subject’s intention
is manipulated by giving a reward for successfully completing
a task. It is then assumed that the subject is intending to
complete the task; caution is required when the subject is not
attending to the task. y; is a measure of neural activity. z; is
taken to be the goal of the task, whereas x; must describe
how the task is carried out. In an item selection task where
the subject moves a cursor to select one of several objects,
x, is the intended cursor motion and z; is the intended object
selection. In a tracking task where the subject is asked to move
a cursor along a specified route, the intention process and the
task coincide (z; = z;).

2110



Determining ¢(.) is the neural encoding problem. Progress
on this has been made in certain systems [2], but in practice
for BMIs a simple linear model has proved applicable [4], [S]:

a ~ N(0,Q) (D

where x; € R™, y; € R™ and H is an n xm matrix. To decode
the neural signal, we need to make an assumption about how
x4 is generated. z; has been previously taken to be the solution
to a linear, Gaussian difference equation [6], [5]

Yy = Hry + qq,

Tep1 = Az +wy,  we ~ N(O,W). (2)

One advantage of this model is that it is analytically convenient
— the Kalman filter algorithm provides an optimal Bayesian
decoding to find Z;. Another advantage is that it generalizes
to any task requiring the same intention space. However,
the experiment cannot usually enforce the subject’s intention
to be a random draw from this distibution. Typically, the
mean and covariance of x; are set to match the mean and
covariance of an ideal response that earns the reward for the
subject. A leap of faith or a body of experimental evidence is
required to show that the model is relevant and reasonable.
The utility of this model is already firmly established as
a way of decoding intention in BMIs. Section III gives a
demonstration of information capacity calculated using this
model. If information capacity provides a quantity that is
experimentally stable, and is found to provide a level playing
field for comparing different experiments and different BMIs,
we deduce that the violations of model assumptions are not
great enough to upset the utility of the model.

The task information is the information rate between z;
and Z;. For a selection task with objects labeled 1, ..., K the
Shannon information per trial is

K

B .
T(z2) = )Y p=2(j, k) logy (M)

j=1k=1

where p,:(j, k) = P{z; = j, 2t = k}. Assuming that the trials
are independent, the information rate Z(z;, %) is Z(z, 2t)
divided by the mean time per trial.

The information capacity is the information rate between
z; and y;. The information rate, in bits per unit time, may be
calculated for Gaussian models using a spectral method: for
the model given by (1) and (2) in the particular case where z;
is a one-dimensional process,

- 1/2
I(xe,ye) = —/ log2{1—H'[HH'—i—(l—i—A2
0
24 cos(27r1/))Q/W]_1H} dv. 3)

For certain non-Gaussian models, the calculation of informa-
tion capacity may still be possible [7]. We view refinements in
calculating information capacity as being, for now, secondary
to the primary issue of developing information capacity as a
tool for investigating BMIs. Differences between BMIs and
more conventional communication channels are that g(.) is a
property of the BMI (rather than a parameter to be selected
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Fig. 1. Behavioral Paradigm. Trials were composed of a fixed baseline period
(1.26s) followed by a 0.9s presentation of a target tone. Subjects had up to
4.5s to match the target tone and hold it within a criterion window for the
required hold time (0.54s). The auditory tone frequencies that were played
back to the subjects were the initial target cue followed by 90ms (or 30ms)
feedback pips during the response window. The unobserved ideal response
or “intended” response (x¢) is shown here for a two-target task. Trials were
separated by a random intertrial window.

by the communications engineer) and z; cannot be directly
observed. If g(.) is thought of as fixed, then the information
capacity is the conventional channel capacity. In practice
g(.) varies, due to neural plasticity and/or instability of the
recording device, and must be estimated in an adaptive way.
We have called Z(xy,vy;) information capacity of the BMI
rather than the channel capacity to highlight the differences
from the standard communication theory framework.

B. BMI paradigm used in case studies

The experiments analyzed below used 177 sessions from
7 rats [4]. Each session consisted of 100 trials in which a
cortical control system was used to perform a one-dimensional
auditory analog of a center out reaching task [8]. In center
out reaching experiments, the hand (or cursor, in the case of
brain controlled tasks) is held at the center of a circle until
a target cue is placed in one of a fixed number of points
on the perimeter of the circle. The subject’s task is to move
the hand (cursor) into the target position and hold it for a
fixed amount of time. Target acquisition must be completed
within an allowable response period. In our auditory version,
an audio cursor is represented by sound pips representing
the one-dimensional location within the logarithmically-spaced
250Hz to 16kHz frequency spectrum. Baseline firing rates
were mapped to the center of the frequency space, and
trials began with the presentation of a target tone at a given
frequency. Subjects had a fixed amount of time to match the
target frequency using the auditory cursor. The movement of
the auditory cursor was dependent on the real-time decoding
of the cortical signals as described below. As with the center-
out paradigm, trials are marked either as “correct” (held at
correct target frequency for the hold period), “wrong” (held
at an incorrect target frequency for the hold period), or “late”
(no answer within the response period). Timing for a single
trial in these experiments is shown in figure 1.

A Kalman filter was implemented to decode, or infer, an
estimate of the control signal (&) for the auditory cursor from
the observed electrophysiological signal (y;). This signal was
either a train of 90ms spike bins (n=6 rats) or 30ms RMS
values of the local field potential (n=1) of the motor cortex.
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Fig. 2. Closed loop cortical control schematic. Spike bins (or binned RMS
of LFPs), y¢, from the motor cortex were decoded using a Kalman filter to
predict the cursor frequency (Z¢). The predicted frequency was fed back to
subjects via a speaker every 90ms (30ms for LFP) of the response window.

After each trial, an adaptive algorithm iteratively modified the
filter parameters to minimize the squared error between the
predicted control signal, &, and the “intended” control signal,
x;. A schematic of the closed loop cortical control system is
shown in figure 2.

1II. EXPERIMENTAL RESULTS
A. Information Capacity of Multi Unit Recordings

Offline analysis of information capacity was performed
on data obtained from 6 rats that were trained to control
the auditory cursor to reach a fixed target over 24 sessions.
In these experiments, rats started from a naive state, and
learned to control the cursor in 6.8£1.2 (mean+SD) sessions.
Information capacity was calculated for each trial of a session
using equation (3) with the parameters H, K, W, A that were
adapted and used for each trial. The mean information capacity
across all trials in a session was calculated for each subject.

Figure 3 shows the results for the mean performance and the
mean information capacity as a function of training session.
The average amount of information capacity for all subjects in
this task was 0.32 bits per 90ms bin, or 3.6 bits/s. Regression
analysis showed that the amount of IC increases significantly
as the subject learns to control the auditory cursor over the
first 13 sessions (p<0.01, one-way ANOVA), while the last 11
sessions did not show evidence of an increasing trend (s, one-
way ANOVA). However, the performance (task information)
of the subjects continued to show a positive trend during these
final 11 sessions (p<0.01, one-way ANOVA). This suggests
that the control signal may have reached it’s information limit,
however the subjects were able to better use the information
contained in the signal to complete the required task.

We examined the spectrum of equation 3 for one subject
(KCD-05). Figure 3 shows the spectrum of 3 trials (04, 27,
52) from session 24. Note that most of the power is contained
in frequencies < 0.1 cycles/bin, indicating that the control
signal has the largest affect on the order > 1.11s.

The actual rask information was lower than the information
capacity. For example, in the MUA experiments using two
response states (maximum of 1 bit of information per trial),
subjects eventually were able to perform at a level of 0.7
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Fig. 3. Information Capacity (IC). The amount of information capacity

contained the in the 90ms spike-binned signal as a function of the number of
training sessions for rats (n=6) for a single target reaching task. The mean IC
for all session was 0.32 bits/bin, which for a 90ms bin is equivalent to 3.6
bits/s. Error bars indicate standard error.
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Fig. 4. Information capacity spectrum for for 3 trials (04, 27, 52) from

one subject (KCD-05) on session 24 of a single target task. The information
capacity spectrum is defined as the integrand in (3).

bits/trial. The average length of a trial was 5.9s, thus providing
for an average task information rate of 0.11 bits/s.

B. Information Capacity of Local Field Potentials

We also analyzed information capacity from 11 behavioral
sessions from one subject who was trained to control an
auditory cursor to a fixed target using local field potentials
of the motor cortex (figure 5). The mean information capacity
across all trials was 0.13 bits/bin, or for a 30ms bin used in this
study, 4.3 bits/s. The regression coefficient of the amount of
IC contained in the LFP signal as a function of training session
was small, positive and significant (0.002 bits per bin/session,
p<0.01, one-way ANOVA).

I'V. DISCUSSION

During MUA controlled experiments, there were changes
in the number of units used to control the cursor from
session to session (mean = 11.5 units per session, coefficient
of variance = 30.1%). We found that the number of units
had a significant effect on the amount of IC in the signal
(0.01 bits per bin/unit, p<0.01, one-way ANOVA). This was
expected as there was little correlation between sites and
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Fig. 5. Top: mean information capacity of all LFP sessions. Bottom:

Information capacity of LFP signal across the 100 trials of Session 9.

thus the information capacity should increase approximately
linearly with the number of sites. This relationship did not
confound our finding that IC improved over training, as the
number of units did not have significant trend with respect to
session number. The LFP signals, on the other hand, are highly
correlated between sites so the information capacity should not
increase much with additional sites. Although we find here that
LFP has a slightly higher information capacity than MUA, we
expect that this relationship would change if larger electrode
arrays were used. The LFP experiments analyzed here used
16 channels for control on all sessions.

Since information capacity relies on adaptively estimating
the parameters in the model, one must check that parameter
estimation does not have too large an effect on the estimated
information capacity. When too little data are available to
estimate the parameters, our experience suggests that over-
fitting to noise increases the estimated information capacity
(as can be seen in the first 7 trials of Figure 5).

Note that the scale of the unobserved intention process x; is
arbitrary. Changing the scale of z; causes corresponding scale
changes in W, H and @ that cancel out in the calculation
of information capacity. Different tasks may have intention
processes on different scales, but that in itself will not affect
information capacity. The parameters H and @ represents the
ability of a subject to modulate the signal in response to
a change in intention. This may depend on the task being
attempted, but one can argue heuristically that the dependence
should be weak: for example, if a cursor is being used to carry
out a task, the ability to control the cursor may be transferable
across different cursor-based tasks.

A natural question to ask is how close one can come to
achieving the information capacity by a careful choice of task.
Previous BMI research using rhesus monkeys [9] has shown
task information rates as high as 5.6 bits/s, based on rapid
sequences of trials.

We do not propose that information capacity should replace
task information as a way to quantify BMI performance, but
information capacity does complement task information by
being only weakly dependent on the task, and allows for
comparisons that would not be possible simply using task
information.

APPENDIX

Theorem 4 of [10] gives a spectral formula for the rate
of Kullback-Leibler divergence between jointly Gaussian sta-
tionary processes. Since mutual information is the Kullback-
Leibler divergence between the joint distribution and the
product distribution (if z; and y; had the same marginal
distributions, but were independent), this theorem amounts to

2

1/
Tar) = [ {1og a(w)] + log 0y )] ~ o [D(w)] } i

1/2
= 7/ log |[I - T,* (V)I‘my(y)rq;l(z/)rym (v)] dv.
0

Here, I'(v) is the joint spectral density of z; and y; at fre-

quency v cycles per unit time, and |.| denotes the determinant.

To evaluate this for (1) and (2), define ; = x; — Ax;_1 and

9y =y — Ay;_1. This ensures that Z; and g, are stationary,

even if x; and ¥, are not. Since information rate is preserved by

applying a differencing operator, Z (x4, y;) = Z(%, 7). Now,
Ty = Wt

9 = Hw +q — Agq—

and so I'z(v) =W, T's5(v) = WH' and T'j(v) = HWH' +
(I — Ae 2™)Q(I — A’e?™). This gives

B 1/2
T(woy) = — / log |1 — H'[HWH' +
0

(I — Ae™>™)Q(I — A'e™)| " HW | dv,

which simplifies to (3) in our one-dimensional case.
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