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Equation numbers continue those in the article; citation numbers correspond to references
given in the article.

S1 Comments on Procedure 1

Remark 1. For a stationary time series, if σ > 0 is fixed and T grows, one expects (under
suitable mixing conditions such as those of Ref. 44) that Vt(σ) → V∞(σ). If Vt ≈ V∞ for

t = 1, 2, . . . then Procedure 1 gives θ̂(n) ≈ θ̂
(n−1)
T . On the other hand, fixing T , letting σ → 0

and using Eq. 14, gives a rather different result of Vt = (c2 + t)σ2Σ + o(σ2). In this case,

θ̂(n) ≈
T−1
∑

t=1

θ̂
(n−1)
t

c2 + 1

(c2 + t)(c2 + t + 1)
+ θ̂

(n−1)
T

c2 + 1

c2 + T
. (15)

A consequence of Eq. 15 is that, for sufficiently small σ, all the weights in the weighted
average representation of Procedure 1 are positive. Eq. 15 also helps to explain why small
values of c may lead to slow convergence, since small values of c lead to low weights for large
t.

Remark 2. If the assumption in Eq. 1 is relaxed to

E[θt|θt−1] = θt−1 + O(σ2) (16)

then Theorem 1 holds with θ̂t−1 in Eq. 5 replaced by E[θt|y1:t−1]. The weaker assumption
in Eq. 16 may be appropriate if θ lies in a bounded set, and θt is constrained to stay in this
set. In this case, the weighted average interpretation of Procedure 1 is lost. Our solution
to boundary issues for θt is to reparameterize to remove the difficulty, or just to ignore the
difficulty if it disappears by itself for sufficiently small σ.

S2 Initial values

The property that Procedure 1 updates as a weighted average of local parameter estimates
is less appropriate when the information about a parameter is not spread out across time.
A good example of such a parameter is an initial value parameter (IVP). Other situations
where information about a parameter is concentrated in time, such as modeling a structural
break, can be treated in a similar way. We describe θ as an IVP if f(x0) = f(x0|θ), but
f(xt|xt−1) and f(yt|xt) do not depend on θ for t > 0. As a particular case, if x0 is supposed
to be fixed and unknown then one can take θ = x0. There may not be any IVP in a model;
for example, if x0 is drawn from the stationary distribution of a time homogeneous Markov
transition density f(xt|xt−1, θ).

For IVPs, we develop Procedure 2 based on Lemma 1. To maximize the likelihood, we
introduce a prior distribution f(θ) with prior variance Var(θ) = σ2Σ.

Lemma 1. Let θ̂0 be the prior mode, i.e., θ̂0 = argmaxf(θ). Let θ̂T be the posterior mode,

i.e., θ̂T = argmaxf(θ|y1:T ). Then

f(y1:T |θ̂T ) ≥ f(y1:T |θ̂0).
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Proof of Lemma 1.

f(y1:T |θ=θ̂T )

f(y1:T |θ=θ̂0)
=

f(θ=θ̂T |y1:T )

f(θ=θ̂0|y1:T )
× f(θ=θ̂0)

f(θ=θ̂T )
≥ 1

The inequality holds by the definition of θ̂0 and θ̂T , since both terms in the product are at
least one.

Procedure 2. (MIF for initial values)

1. Select starting values θ̂(1) and σ1, a discount factor 0 < α < 1, a fixed lag T0 and the
number of iterations N .

2. For n in 1, . . . , N

(i) Evaluate θ̂
(n)
T0

using θ̂0 = θ̂(n) and σ = σ1α
n−1.

(ii) Set θ̂(n+1) = θ̂
(n)
T0

.

3. Take θ̂(N+1) to be an estimate of θ.

Approximating f(θ|y1:T ) by f(θ|y1:T0
) in step 2(i) of Procedure 2 is a standard method

to facilitate nonlinear filtering, termed fixed lag smoothing (1). It is certainly necessary
for a particle filter implementation. The fixed lag smoothing approximation to f(θ|y1:T ) is
only reliable when the information in the data about θ is concentrated at small t values.
Applying Procedure 2 to non-IVP parameters with T0 = T is a direct way to attempt
inference for time-constant parameters. The difficulty of doing this in practice was exactly
the motivation for developing Procedure 1. Procedure 2 is essentially an exhaustive search
over a sequence of increasingly refined IVP values. An advantage of this procedure is that
it fits in computationally with Procedure 1, allowing IVPs to be estimated simultaneously
with other parameters.

S3 MIF via sequential Monte Carlo

S3.1 A basic SMC algorithm

Sequential Monte Carlo (SMC), also known as the “particle filter”, is a numerical method
for filtering and prediction. SMC has aroused considerable practical and theoretical interest
since its development in the 1990s (9–13). Here we present a basic version, which is sufficient
for the purposes of this article. A Monte Carlo filter draws a sample from f(xt|y1:t, θ), and
similarly one-step prediction involves drawing from f(xt+1|y1:t, θ). SMC is based on the
identities

f(xt|y1:t, θ) =
f(xt|y1:t−1, θ)f(yt|xt, θ)

∫

f(xt|y1:t−1, θ)f(yt|xt, θ)dxt

f(xt+1|y1:t, θ) =

∫

f(xt+1|xt, θ)f(xt|y1:t, θ)dxt

which give rise to the following algorithm:
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1. Suppose recursively that XF
t,1, . . . , X

F
t,J have (approximately) a marginal density of

f(xt|y1:t, θ).

2. Make XP
t+1,j a draw from f(xt+1|xt=XF

t,j, θ). Then XP
t+1,j has (approximately) a marginal

density of f(xt+1|y1:t, θ).

3. Now draw XF
t+1,j from {XP

t+1,k} with probabilities proportional to the resampling weights

wk = f(yt|xt=XP
t,k, θ). XF

t+1,j has (approximately) a marginal density of f(xt+1|y1:t+1, θ).
Independent draws can be used, but we use a more efficient systematic scheme (Ref. 13,
Algorithm 2).

4. The conditional log likelihood at time t, defined as `t(θ) = log f(yt|y1:t−1, θ), is estimated

by log
(

J−1
∑J

j=1 wj

)

.

The log likelihood is calculated via the identity `(θ) = log f(y1:T |θ) =
∑T

t=1 `t(θ).
When applying Procedure 1, the time varying parameter θt is included in the state space,

so xt is replaced by (xt, θt). θ̂t and Vt are calculated as the sample mean over the filter
particles XF

t,j and the sample variance over the prediction particles XP
t,j respectively.

We used J = 104 for MIF in Table 1 and J = 3 × 104 for MIF in Fig. 4.

S3.2 Numerical stability

If the number J of particles is not sufficiently large, the conditional distribution f(xt|y1:t)
may not be well sampled by {XF

t,j, j = 1, . . . , J}. Put another way, there may be few (or zero)

particles XP
t,j consistent with the observation yt. The few consistent particles get relatively

large resampling weights and dominate the evolution of the state process — an effect known
as particle depletion (13). In the context of MIF, the particle filter estimates of θ̂t and Vt (say,

θ̂e
t and V e

t ) then become poor. Procedure 1 is more stable if [Vt]ij is approximated by 0 for
i 6= j and by [V e

t ]ii for i = j. This forces Vt away from singularity. Supposing Σ is diagonal,
Eq. 14 reassures us that Vt/σ

2 is asymptotically diagonal as σ → 0, so the approximation is
justified by theory for small σ and by practical stability concerns for large σ. For successful
maximum likelihood estimation, depletion should become a negligible issue as θ approaches
θ̂, and that matches what we found for the example of Sec. 3. When tackling problems that
stretch available computational capacity, particle depletion can still be common in the early
iterations of MIF, where θ may still be far from the MLE.

Even more algorithmic stability can be achieved by using the updating rule

θ̂(n+1) =
1

T

T
∑

t=1

θ̂
(n)
t . (17)

Although Eq. 17 is attractively simple and robust to particle depletion, it does not have the
theoretical property of producing a sequence of estimators converging to the MLE. We found
empirically that employing Eq. 17 on the first 5 iterations of MIF added stability without
adversely affecting the final estimator.
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S3.3 Prediction residuals via particle filters

The prediction residuals, ut(θ̂) = [Var(yt|y1:t−1, θ̂)]
−1/2(yt −E[yt|y1:t−1, θ̂]), can be calculated

via

E[yt|y1:t−1] ≈ 1

J

J
∑

j=1

E[yt|xt = XP
t,j]

Var(yt|y1:t−1) = E[Var(yt|xt)|y1:t−1] + Var(E[yt|xt] | y1:t−1)

≈ 1

J

J
∑

j=1

Var[yt|xt = XP
t,j] +

1

J − 1

J
∑

j=1

(ŷt,j − ŷt,•) (ŷt,j − ŷt,•)
′

where ŷt,j = E[yt|xt = XP
t,j] and ŷt,• = (1/J)

∑J
j=1 ŷt,j.

S4 Some recommendations for stochastic likelihood maximization

This section describes our approach to carrying out inference based on Procedure 1. When
investigating a likelihood surface, there is a trade-off between effort spent on global searching
and local searching. An effective way to investigate large-scale properties of the likelihood,
and simultaneously to check that the maximization procedure is successful, it to initialize the
maximization at a range of parameter values. This approach is formalized in Procedure 3,
below:

Procedure 3. (Investigating the likelihood surface)

1. Pick K starting values (for example, by sampling each component of θ uniformly within

an assigned plausible range) and apply Procedure 1 to get K pairs {(θ̂k, `k)} of estimates
and associated log likelihoods.

2. If there is a clear global maximum – i.e., there are many pairs (θk, `k) with (maxj `j − `k)

small and |θ̂argmaxj`j
− θ̂k| small – then take the MLE to be the average of these global

maximum estimates.

3. If there is not a clear global maximum – many pairs (θk, `k) have (maxj `j −`k) small but

|θ̂argmaxj`j
−θ̂k| not small – then some combination of the parameters is poorly identifiable.

Investigate this by plotting the components of {θ̂k} and calculating correlations. Perhaps
make extra assumptions to improve identifiability and return to step 1.

Procedure 3 requires manual oversight. This is appropriate for diagnostic checking of the
maximization procedure and investigation of the global structure of the likelihood. Manual
intervention is not necessary for each maximization of a profile likelihood or parametric
bootstrap computation, since these require only local optimization in the neighborhood of the
MLE (which is also the true parameter vector for bootstrap simulations). The only situation
where local searches would be inappropriate for profile likelihood or bootstrap computations
arise when the global likelihood has two (or more) separated modes of almost equal likelihood.
These modes should be identified by Procedure 3 and require local maximization about each
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mode. Procedure 1 can be adapted for local maximization by decreasing α, c and Σ. This also
demands a smaller value of N , the number of iterations, which is helpful for implementing
these computationally intensive finite sample procedures.

One subtlety in Procedure 3 is the use of the average in step 2. In our applications, the
Monte Carlo error in evaluating the likelihood is typically large compared to the actual
difference in the likelihood between MIF estimates that have converged to the same mode.
This occurs because MIF seeks the maximum by averaging Monte Carlo error over many
iterations. Thus, we chose to average MIF estimates rather than to take the one with the
highest evaluated likelihood.

To implement step 2 of Procedure 3 one must determine what is meant by “small”. As
this procedure is intended to be used on a broad variety of models, we think automation
is premature. A general observation is that “small” differences in the likelihood are of the
order of one unit of log likelihood.

Some simple methods are available to check that the likelihood is being maximized effec-
tively on simulated data, with a known parameter vector θ∗. Setting θ̂ = arg max `(θ), an

asymptotic result for regular parametric models is that 2(`(θ̂)−`(θ∗)) has approximately the
distribution of χ2(dθ), a chi-squared random variable on dθ degrees of freedom (34). Thus,

beyond the basic property that `(θ̂) ≥ `(θ∗), one can expect `(θ̂) − `(θ∗) ≈ dθ/2. If esti-
mates of the maximized log likelihood compared with the likelihood at θ∗ are not unusual
for (1/2)χ2(dθ), we view this as some evidence for successful maximization. The sliced like-
lihood plots described in Sec. 7 give the formal demonstration of successful maximization,
but require extra computation.

S5 Sufficient conditions for convergence of iterated filtering

Theorem 2 provides a complementary result to Theorem 1, giving sufficient conditions on the
sequence σn → 0 for Procedure 1 to convergence successfully. Although stated as a global
result, Theorem 2 implies corresponding local behavior that is more relevant in practice.

Theorem 2. Suppose that `(θ) is twice continuously differentiable, with a uniform convexity

property that there exist 0 > a > b such that

a > u′∇2`(θ)u > b for all θ and all unit vectors, |u| = 1. (18)

Define the sequence {θ̂(n)} by a stochastic difference equation,

θ̂(n+1) = θ̂(n) + σ2
nM(∇`(θ̂(n)) + ηn). (19)

Take M = (c2 + 1)Σ, so that M is a positive definite symmetric matrix and σ2
nM = V1,n in

the notation of Theorem 1. Suppose that limn σ2
nn

1−β > 0 for some β ∈ (0, 1). Suppose also

that the sequence {ηn} has E[ηn] = o(1), Var(σ2
nηn) = o(1) and Cov(ηm, ηn) = 0 for m 6= n.

If there is a θ̂ with ∇`(θ̂) = 0 then θ̂(n) converges in probability to θ̂.

To see how Theorem 2 applies to MIF, implemented using a Monte Carlo filter, we need
some assumptions. We suppose that the Monte Carlo filter is unbiased: this is not quite
true for sequential Monte Carlo with a finite sample size, but it become exactly true if we
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accept the goal of maximizing the expected Monte Carlo log likelihood rather than the true
log likelihood. Theorem 1 then gives E[ηn] = o(1) as long as σn → 0; we have to assume that
this convergence is uniform over θ. A reasonable model for the variance of a derivative based
on Monte Carlo likelihood evaluations in a neighborhood of size σn is Var(ηn) = O(σ−2

n ),
implying the condition Var(σ2

nηn) = o(1). Formally, to apply Theorem 2, one must assume
that this rate is also uniform over θ. If the Monte Carlo filter uses independent sequences of
random numbers for each iteration, Cov(ηm, ηn) = 0 for m 6= n.

Proof of Theorem 2. The fundamental theorem of calculus gives

∇`(θ) =

∫ 1

0

∇2`(sθ + (1 − s)θ̂)(θ − θ̂) ds.

This can also be written as ∇`(θ) = H(θ)(θ− θ̂) where H(θ) =
∫ 1

0
∇2`(sθ +(1− s)θ̂) ds. We

re-write Eq. 19 as
θ̂(n+1) = θ̂(n) + σ2

nM(Hn(θ̂(n) − θ̂) + ηn) (20)

where Hn = H(θ̂(n)). Eq. 20 can be written as

θ̂(n+1) − θ̂ =
n

∏

k=1

(I + σ2
kMHk)(θ̂

(1) − θ̂)

+
n−1
∑

m=1

{

n
∏

k=m+1

(I + σ2
kMHk)

}

σ2
mMηm + σ2

nMηn.

(21)

H(θ) satisfies the same inequality in Eq. 18 as ∇2`(θ), which guarantees a uniform bound
on the eigenvalues of σ2

kMHkn
1−β. Lemma 2, with A taken to be σ2

kMHk, then secures the
existence of a constant c > 0 such that, for sufficiently large k,

log |I + σ2
kMHk| < −ckβ−1.

A comparison of
∑n

k=m kβ−1 with
∫ n

m
xβ−1dx then gives

log
n

∏

k=m

|I + σ2
kMHk| < cβ−1(mβ − nβ). (22)

Lemma 3 can be applied to Eq. 22 to demonstrate that

n−1
∑

m=1

|σ2
m|

n
∏

k=m+1

|I + σ2
kMHk| = O(1).

Lemma 4 can then be applied, with wm,n−1 = |σ2
m|

∏n
k=m+1 |I + σ2

kMHk| and bn = E[ηn].
This gives

E
[

n−1
∑

m=1

{

n
∏

k=m+1

(I + σ2
kMHk)

}

σ2
mηm

]

→ 0. (23)
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A very similar argument, replacing wm,n−1 by |σ2
m|

∏n
k=m+1 |I+σ2

kMHk|2 and bn by Var(σ2
nηn),

allows the use of Lemma 4 to give

Var
[

n−1
∑

m=1

{

n
∏

k=m+1

(I + σ2
kMHk)

}

σ2
mηm

]

→ 0. (24)

In addition, Eq. 22 implies that

n
∏

k=1

(I + σ2
kMHk)(θ̂

(1) − θ̂) → 0. (25)

Eq. 23, Eq. 24 and Eq. 25 imply convergence in probability for Eq. 21, which completes the
proof.

Lemma 2. If A is a negative definite matrix with |A| < 1 and with largest eigenvalue π < 0
then log |I + A| < π.

Proof. Let u be an arbitrary vector with |u| = 1.

log |I + A| = log(sup
u

|u′(I + A)u|)

= log(sup
u

|1 + u′Au|)

By hypothesis u′Au > −1, and so supu |1 + u′Au| = 1 + supu u′Au. Therefore,

log |I + A| = log(1 + sup
u

u′Au) = log(1 + π) < π,

where we use the inequality log(1 + π) < π for π ∈ (−1, 0).

Lemma 3. If c > 0 and 0 < β < 1 then

n
∑

m=1

exp{c(mβ − nβ)}mβ−1 = O(1). (26)

Proof. We write the sum in Eq. 26 as

nβ 1

n

n
∑

m=1

exp{−c(1 − (m/n)β)nβ} ×
(m

n

)β−1

. (27)

As n → ∞, Eq. 27 can be compared to the integral

nβ

∫ 1

0

exp{−c(1 − xβ)nβ}xβ−1 dx.

This can be analyzed in two parts. Firstly,

nβ

∫ 1/2

0

exp{−c(1 − xβ)nβ}xβ−1 dx < nβ

∫ 1/2

0

exp{−(1 − (1/2)β)cnβ}xβ−1 dx

= nβ exp{−(1 − (1/2)β)cnβ}(1/2)β/β → 0. (28)
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For the second part, change variable to y = (1 − xβ) and proceed as follows:

nβ

∫ 1

1/2

exp{−c(1 − xβ)nβ}xβ−1 dx = nβ

∫ 1−(1/2)β

0

exp{−cynβ}βx2(β−1) dy

< nβ22(1−β)

∫ ∞

0

exp{−cynβ} dy = 22(1−β)/c. (29)

Eq. 28 and Eq. 29 together yield the required result.

Lemma 4. Suppose bn → 0 and
∑n

m=1 |wm,n| < C with wm,n → 0 as n → ∞ for each m.

Then
∑n

m=1 bnwm,n → 0.

Proof. bn is bounded, say |bn| < K. For ε > 0, ∃n0 : |bn| < ε ∀n > n0. Also, ∃n1 : |wm,n| <
ε/n0 whenever m ≤ n0 and n > n1. Then, for n > max(n0, n1), |

∑n0

m=1 bnwm,n| < Kε and
|∑n

m=n0+1 bnwm,n| < Cε. Thus, |∑n
m=1 bnwm,n| < (K + C)ε.

S6 Standard errors and confidence intervals

The Fisher information can be estimated by

Îij =
T

∑

t=1

∂

∂θi

log f(yt|y1:t−1, θ̂)
∂

∂θj

log f(yt|y1:t−1, θ̂) (30)

leading to corresponding standard errors SE(θ̂i) = [Î−1/2]ii. Procedure 4 details how this
was implemented in this article.

Procedure 4. (Standard errors)

1. Let θ̂ be the sample mean of the (vector) estimates {θ̂k, k = 1, . . . , K} from K replications

of Procedure 1. Calculate `t,ij = log f(yt|y1:t−1, θ̂ + hijδi) for 1 ≤ i ≤ m and 1 ≤ j ≤ q,
where δi is a vector of zeros with a one in the ith position. {hij} can be the offsets used
for a sliced likelihood diagnostic plot. Alternatively, one can use q = 2 with hi1 = 0 and
hi2 = h

√
Φii, where Φ is the sample covariance matrix of {θ̂k}. The constant h is chosen

by trial and error, and Φ gives the relative scale of the uncertainty in the components of
θ.

2. Regress `t,ij on hij for each i, giving rise to regression coefficients ˙̀
t,i with variance

estimates V̂ar( ˙̀
t,i).

3. Estimate the Fisher information by Îij =
∑

t
˙̀
t,i

˙̀
t,j and estimate the derivative of the

log likelihood at θ̂ by ˙̀
i =

∑T
t=1

˙̀
t,i.

Procedure 4 step 2 calculates numerical derivatives, averaging over a neighborhood given by
{hij}. If {hij} are too small, the Monte Carlo error in the likelihood evaluation will dominate

the numerical derivative. Since E[ ˙̀t,i] ≈ ∂`/∂θi,
∑T

t=1 E[ ˙̀2t,i] ≈
∑T

t=1

{

(∂`/∂θi)
2 +Var( ˙̀

t,i)
}

.

Thus the bias of Îii as an estimator of Iii is approximately
∑T

t=1 V̂ar( ˙̀
t,i). We monitor

this quantity and trust the estimate Îii only if Îii �
∑T

t=1 V̂ar( ˙̀
t,i). Otherwise, either the
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neighborhood used to calculate the numerical derivative or the Monte Carlo sample size must
be increased. There could be some advantage in calculating the numerical derivatives in the
directions of the eigenvectors of Φ, with the eigenvalues giving the appropriate scaling in
each direction. We prefer not to do this, since K is not necessarily large compared to m. In
particular, if K ≤ m then Φ is singular.

Note that one can use θ̃ = θ̂ + Î−1 ˙̀ as a possibly improved parameter estimate, based
on a quadratic approximation to the local likelihood surface (35). However, θ̃ involves the
potentially inaccurate Monte Carlo derivative estimates that MIF carefully avoids, and in
our experience θ̂ is more reliable for the situation arising in this article.

Standard errors are usually interpreted in the context of a normal approximation for the
MLE: one is invited to think of θ̂i ± 2 SE(θ̂i) as an approximate 95% confidence interval. A
more accurate confidence interval comes from the profile log likelihood (34). Profile likeli-
hoods can be calculated using MIF, but at considerably more computational expense than
the SEs from Procedure 4. If θ is partitioned into two components ζ and η, of dimensions
dζ and dη respectively, then the profile log likelihood of η is defined by `(p)(η) = supζ `(ζ, η).
An approximate 95% confidence interval for η is given by {η : 2[`(p)(η̂)− `(p)(η)] < χ2

0.95(dη)}
where χ2

0.95(dη) is the 0.95 quantile of a χ2 random variable on dη degrees of freedom, and
η̂ = argmax `(p)(η).
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