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Truncated Importance Sampling

Edward L. IONIDES

Importance sampling is a fundamental Monte Carlo technique. It involves generat-
ing a sample from a proposal distribution in order to estimate some property of a target
distribution. Importance sampling can be highly sensitive to the choice of proposal dis-
tribution, and fails if the proposal distribution does not sufficiently well approximate
the target. Procedures that involve truncation of large importance sampling weights
are shown theoretically to improve on standard importance sampling by being less
sensitive to the proposal distribution and having lower mean squared estimation error.
Consistency is shown under weak conditions, and optimal truncation rates found under
more specific conditions. Truncation at rate n1/2 is shown to be a good general choice.
An adaptive truncation threshold, based on minimizing an unbiased risk estimate, is
also presented. As an example, truncation is found to be effective for calculating the
likelihood of partially observed multivariate diffusions. It is demonstrated as a com-
ponent of a sequential importance sampling scheme for a continuous time population
disease model. Truncation is most valuable for computationally intensive, multidimen-
sional situations in which finding a proposal distribution that is everywhere a good
approximation to the target distribution is challenging.
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1. INTRODUCTION

Importance sampling is a basic Monte Carlo tool (Liu 2001; Bernardo and Smith 1994).
A typical goal is to estimate H = E f [h(X)] =

∫
h(x) f (x) dx by importance sampling

using X1, . . . , Xn drawn from a density g(x). Here, f (x) is called the target density and
g(x) is the proposal density. The standard unbiased estimate of H is

Hn =
1

n

n∑

i=1

h(Xi )wi , (1.1)

where wi = w(Xi ) = f (Xi )/g(Xi ). This estimate may have infinite variance if the tail
behavior of g(x) is not sufficiently similar to h(x) f (x). To avoid this, g(x) must be chosen
carefully so that h(x) f (x)/g(x) does not get too large. Standard methods to choose g(x)
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(Bernardo and Smith 1994, Sect. 5.5.3) may perform poorly in complex, high-dimensional
importance sampling situations. We introduce truncated importance sampling as a read-
ily applicable, theoretically justifiable method which reduces the sensitivity of importance
sampling to the choice of g(x). Truncation is also found to reduce the Monte Carlo mean
squared error for importance sampling in a broad class of situations. The truncated impor-
tance sampling estimate is

H ′
n =

1

n

n∑

i=1

h(Xi )w
′
i ,

where w′
i = wi ∧ τn , the minimum of wi and τn .

There are two distinct motivations for importance sampling. First, drawing from f (x)

may be hard, in which case g(x) may be chosen to be convenient for simulation. Second,
g(x) can be chosen to reduce Monte Carlo variability. This second motivation can be in
opposition to the first: drawing from f (x) may be easy, but result in prohibitive Monte
Carlo variability. For example, when h is nonnegative, a choice of g(x) ∝ h(x) f (x) re-
sults in var(Hn) = 0 but calculating w(x) = f (x)/g(x) then requires knowledge of the
normalizing constant

∫
h(x) f (x) dx . For the first motivation h is not of primary interest

for the choice of g, whereas for the second the particular h is critical. Truncation can be
applied when importance sampling is used for either reason. A feature of H ′

n is that h plays
no direct role in the truncation, which depends only on how well g can approximate the
tail of f .

Truncation is shown in Section 2 to give mean square consistency under weak condi-
tions. Section 3 determines optimal truncation rates, requiring more assumptions. The rate
τn = n1/2 is found to have good asymptotic properties, and also performs well in the exam-
ples presented. Section 4 describes conditions under which the distribution of the truncated
importance sampling estimator is asymptotically normal; again, the rate τn = n1/2 is fa-
vorable in this context. Section 5 introduces an adaptive truncation threshold, based on
minimizing an unbiased risk estimate. Section 6 discusses a toy example, for which bias
and variance can be calculated analytically. Section 7 develops an importance sampling ap-
proach to inference for partially observed diffusion processes, where truncation assists the
use of a linearization to give a proposal distribution. Results are shown in Section 7.1 for
a population model of cholera infection and mortality. This fairly elaborate epidemiologi-
cal model demonstrates a type of situation where truncation is expected to be particularly
useful. For complex models it may be relatively easy to find a function g(x) which well
approximates the center of h(x) f (x), but harder to approximate the tails. As increasing
computational capabilities lead to the consideration of increasingly complex stochastic
models and Monte Carlo inference techniques, truncation methods for importance sam-
pling may have an increasing role to play. Recent applications of importance sampling
to complex stochastic models include population genetics (Stephens and Donnelly 2000),
finance (Glasserman et al. 1999) and signal processing (Arulampalam et al. 2002). With
or without truncation, a good choice of the proposal density g(x) reduces Monte Carlo
variability. Truncation, however, alleviates the sensitivity to the tail behavior of g(x). The
intuition behind the effectiveness of truncation is that it gives less weight to the part of the
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space that g(x) cannot approximate effectively based on a sample of size n, which other-
wise leads to large Monte Carlo variability. This heuristic is discussed further in Section 8.

2. CONSISTENCY OF TRUNCATED IMPORTANCE SAMPLING

Let bn and Vn be the bias and variance of H ′
n . Supposing that h(x) f (x) = 0 whenever

g(x) = 0, the bias may be calculated as

bn = Eg[H ′
n] − H =

∫

x :g(x)>0
h(x)((w(x) ∧ τn) − w(x))g(x)dx

=
∫

x : f (x)>τn g(x) and g(x)>0
h(x)(τng(x) − f (x))dx .

The integrand is bounded by |h(x)(τng(x) − f (x))| ≤ |h(x) f (x)|, since f (x) > τng(x)

over the region of integration. Thus, dominated convergence gives bn → 0 if τn → ∞ as
long as E f [|h(X)|] < ∞. To bound the variance,

Eg[(h(X)w′(X))2] =
∫

x :g(x)>0
h(x)2(w(x) ∧ τn)

2g(x) dx

≤ τn

∫

x :g(x)>0
h(x)2w(x)g(x) dx

≤ τn E f [h(X)2].

Thus, Vn = varg(H ′
n) ≤ τn E f [h(X)2]/n and so Vn → 0 as long as E f [h(X)2] < ∞ and

τn/n → 0. This gives very general conditions for the truncated importance sampling to
give mean square consistent estimators, while there is no such guarantee for the standard
version. If we know more about the tail behavior of f (x), g(x) and h(x) we can get optimal
rates for τn , as shown in Section 3.

A consistency argument similar to the above applies for the estimator

H ′′
n =

1

n

n∑

i=1

(h(Xi )w(Xi ) ∧ τn) ∨ (−τn), (2.1)

where h(Xi )w(Xi ) is truncated, rather than w(Xi ). Since h(x) is not necessarily positive,
two-sided truncation is required. Arguing heuristically, it is undesirable that H ′′

n tends to
introduce bias by truncating extreme values of h(x) which contribute disproportionately
to H . If g(x) is a reasonable proposal distribution, then extreme values of w(x) should
typically correspond to small values of h(x), allowing the truncation to reduce Monte Carlo
variability without introducing excessive bias.

3. OPTIMAL RATES

To get optimal rates, we require more assumptions than used for the consistency ar-
gument. The resulting theoretical investigation still leads to some useful and possibly sur-
prising findings. For X drawn from g, let Z = w(X) and suppose that Z has a density
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fZ (z). For truncated and standard importance sampling it is not necessary that Z should
have a density, but the assumption is convenient for the analysis of this section. We also
assume, as in Section 2, that h(x) f (x) = 0 whenever g(x) = 0. To study the tail behavior
of Z we suppose that fZ (z) ∼ z−(α+2), meaning that there exist some z0, a and b such
that az−(α+2) < fZ (z) < bz−(α+2) for all z > z0. The property Eg[Z ] < ∞ implies that
α > 0. Suppose initially that h is bounded; this may arise when using importance sam-
pling for integrating out unobserved variables to calculate a likelihood, as in the example
of Section 7. The bias may be calculated as

bn =
∫ ∞

τn

Eg[h(X)|Z = z](τn − z) fZ (z) dz

∼ τ−α
n . (3.1)

For α < 1, varg(Z) = ∞. This leads us to look at two separate cases for bounding Vn .

Case (i). α < 1. We find that Vn ∼ n−1τ 1−α
n since

Eg[(h(X)w′(X))2] =
∫ ∞

0
Eg[h(X)2|Z = z](z ∧ τn)

2 fZ (z) dz

∼ τ 1−α
n . (3.2)

A bias-variance trade-off, to minimize b2
n + Vn , suggests τn ∼ n1/(1+α). This gives a mean

square convergence rate of b2
n + Vn ∼ n−2α/(1+α).

Case (ii). α > 1. Now Eg[(h(X)w′(X))2] is no longer determined by the tails, and we find
the usual importance sampling rate Vn ∼ n−1. We can still show that truncation gives a
higher order reduction in mean squared error. The reduction in variance due to truncation,
which is always nonnegative, is

rn = varg(Hn) − Vn

= n−1
{ ∫ ∞

τn

Eg[h(X)2|Z = z](z2 − τ 2
n ) fZ (z) dz − H2 + (H + bn)2

}

∼ n−1τ 1−α
n . (3.3)

The mean squared error of H ′
n is varg(Hn) − rn + b2

n . Since τn plays no role in varg(Hn),
truncation can be chosen with the goal of minimizing b2

n − rn . Suppose τn ∼ nε+1/(1+α),
with ε > 0. Then, rn dominates b2

n and so truncation leads to a reduction in mean squared
error of order n(1−α)(ε+1/(1+α))−1. This reduction increases as ε ↓ 0. In the limit, with
ε = 0, truncation with τn ∼ n1/(1+α) may either provide the mean square optimal rate or
give rise to a truncation rule performing worse than Hn . This depends on the relative size
of the two terms rn and b2

n which are both of order n−2α/(1+α).
One slightly strange feature of these rate calculations is that the more pathological

cases (α small) require less truncation (i.e., a higher τn) than those with larger α. This is
because the b2

n term dominates for small α. As α increases, b2
n decreases faster than Vn so

the optimal rate is obtained by decreasing τn to control Vn . From a practical point of view,
setting τn = n1/2 is an attractive choice since it gives the optimal first order rate and an
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advantageous higher order correction with α > 1, and more generally assures consistency.
There is a hazard associated with using τn ∼ nβ with β < 1/2: although this will give a
good convergence rate for 1/(1 + α) ≤ β, one risks losing a possible rate b2

n + Vn ∼ n−1

if 1 < α < 1/2β. It would be unfortunate to lose first-order optimality in pursuit of higher
order optimality.

The calculations in this section can be generalized, and remain essentially unchanged,
for h(x) unbounded but sufficiently slowly varying. For example, if h(x) is a polynomial
in x and w(x) increases exponentially then Eg[h(X)k |Z = z] increases logarithmically
with z. One can then replace (3.1) by bn ∼ τ−α+ε

n for any ε > 0, with similar adjustments
required to (3.2) and (3.3). Importance sampling with polynomially bounded h plays a role,
for example, in pricing financial options (Glasserman et al. 1999). The rate calculations in
this section can also be modified to apply to H ′′

n in (2.1) without a polynomial bound on
h, setting Z = h(X)w(X). Although this favors the use of H ′′

n , H ′
n is still preferred for the

reasons given in Section 2.
The rates calculated in this section correspond to a worst-case scenario, and in specific

cases improved rates may be possible. For example, if α > 1, then varg(Hn) ∼ n−1 but
if h(x) ≥ 0 and g(x) ∝ h(x) f (x), then varg(Hn) = 0. The rate calculations in (3.1) and
(3.3) are still formally correct in such special cases but the bias-variance trade-off argument
no longer gives the truncation rate minimizing mean squared error.

4. ASYMPTOTIC NORMALITY

The distribution of truncated importance sampling estimators is asymptotically normal,
under some general conditions. Here we discuss two results, postponing further details and
proofs to Appendix A.

Theorem 1. Suppose that τnn−1/2 is bounded and limn→∞ τn = ∞. The estimator
H ′′

n has a Gaussian limit. If h(X) is bounded (or, more generally, if E [h(X)|w(X)] is
bounded) then the estimator H ′

n has a Gaussian limit.
Theorem 1 shows that a truncation rate τn ∼ n1/2 has a privileged position of combin-

ing asymptotic normality with the favorable properties of Section 3. If var(Hn) = ∞, then
limn→∞

√
nvar(H ′

n) = ∞, and the asymptotic normality occurs at a different rate from the
usual

√
n central limit theorem for averages of independent variables. The requirement that

h be bounded is sufficient but not necessary to imply a Gaussian limit for H ′
n . The methods

used to prove Theorem 1 could be extended to investigate other tail behaviors, though, in
latent variable likelihood calculations such as Section 7, it is usual for h to be bounded. The
n1/2 bound on the rate of truncation is also not necessary. For example, Theorem 2 consid-
ers more general truncation rates than Theorem 1, at the expense of additional assumptions.

Theorem 2. Using the notation of Section 3, let X have density g, let Z = w(X) and
suppose that Z has a density fZ (z) with tail behavior fZ (z) ∼ z−(2+α) for 0 < α < 1. If
h(X) is bounded (or, more generally, if Eg[h(X)|w(X)] is bounded) with limn→∞ τn = ∞
and limn→∞ τnn−1/(1+α) = 0, then H ′

n has a Gaussian limit.



300 E. L. IONIDES

5. TRUNCATION SELECTION VIA UNBIASED RISK
ESTIMATION

We present a finite sample method to choose τ for a particular finite weighted sam-
ple {(h(Xi ), wi ), i = 1, . . . , n}, via minimizing an estimate of the risk function. Similar
approaches have been applied to regression model selection (Mallows 1973) and wavelet
coefficient thresholding (Donoho and Johnstone 1994). The risk function r(τ ) is taken to
be the mean squared error

r(τ ) = b2(τ ) + V (τ ).

Here, b(τ ) and V (τ ) are the bias and variance of H ′
n , with the dependence on τ made

explicit and the dependence on n suppressed. An unbiased estimator of b(τ ) is b̂(τ ) =
(1/n)

∑n
i=1[(τ − wi ) ∧ 0]h(Xi ). Unbiased variance estimators v̂ar(b̂(τ )) = [n(n − 1)]−1

∑n
i=1

{
[(τ −wi )∧ 0]h(Xi )− b̂

}2 and V̂ (τ ) = [n(n − 1)]−1∑n
i=1

{
(τ ∧wi )h(Xi )− H ′

n}2

then give rise to an unbiased estimator of r(τ ), namely

r̂(τ ) = b̂2(τ ) − v̂ar(b̂(τ )) + V̂ (τ ).

This motivates a minimum unbiased risk estimate (MURE) truncation rule, taking τ̂ to
minimize r̂(τ ), that is, τ̂ = arg minτ r̂(τ ). It is necessary to store the entire weighted
sample to evaluate τ̂ and the corresponding estimator H ′

n . The additional computation of
implementing MURE is approximately linear in the sample size. If the effort of generating
each weighted pair (h(Xi ), wi ) is considerable, the computational effort of MURE may be
negligible. Alternatively, if large sample sizes are available, it may be preferable to rely on
asymptotic truncation results.

MURE may also be used to calibrate the constant for an asymptotically justified trun-
cation scheme. For example, if τ̂n is calculated based on a sample {(h(Xi ), wi ), i =
1, . . . , n}, and the sample size is later increased to m > n, then one may adopt a trun-
cation threshold τm = τ̂n(m/n)1/2. This avoids the need to repeat the MURE calculation
whenever the sample size is increased.

To investigate the effectiveness of τ̂ , E[r(τ̂ )] is compared in Sections 6 and 7 with
r(nβ) and with the risk minτ r(τ ) corresponding to truncation at τ̃ = arg minτ r(τ ). Com-
parison with τ̃ demonstrates how much improvement would be possible if the mean-square
optimal threshold, which is not normally available to the practitioner, were revealed by an
oracle. Hence, following Donoho and Johnstone (1994), τ̃ is referred to as the “oracle”
truncation threshold.

For both the examples of Sections 6 and 7, τ̂ , τ = n1/2, and τ̃ all have fairly similar
performance. In every situation encountered by the author, r̂(τ ) had a unique local mini-
mum for τ in the interval [0, maxi wi ] and was readily minimized by numerical methods.
The expectation of r̂(τ ) is undefined when untruncated importance sampling has infinite
variance, in which case var(b̂(τ )) = ∞. This does not imply that E[r(τ̂ )] = ∞, and
the MURE procedure was found to be effective for the examples in Sections 6 even in
situations where var(Hn) = ∞.
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6. A TOY EXAMPLE

We consider a toy example, with

f (x) = (1/
√

2π)e−x2/2

and
g(x) = (1/

√
2πσ 2)e−x2/2σ 2

for σ < 1. In the notation of Section 3, Z = σ(g(X)
√

2πσ 2)σ
2−1 and

fZ (z) ∝ (log(z/σ))−1/2z−
(
2+σ 2/(1−σ 2)

)
.

Ignoring the slowly varying term (log(z/σ))−1/2 this corresponds to α = σ 2/(1 − σ 2).
One would not intentionally get oneself into the kind of situation caricatured here, where
the proposal distribution has shorter tails than the target. In higher dimensional situations,
this can be harder to diagnose and to avoid. One reason for this is that, if f (x) and g(x) are
densities on Rd , the tails of the proposal distribution cannot be uniformly larger than |x |−d

in order that
∫

g(x) dx = 1. A related explanation invokes the “curse of dimensionality”:
the difficulty of importance sampling typically increases exponentially with the dimension
d, so in higher dimensions it is necessary to take increasing care in the choice of proposal
distribution. Choosing a relatively flat proposal distribution, insensitive to the particular
target distribution, is not computationally viable as d becomes large.

When carrying out truncation at rate τn ∼ nβ , we use τn = Cnβ . In this example
(in common with many, but not all, importance sampling situations) Eg[w(X)] = 1. The
natural unit scale of the weights suggests taking C = 1 as a default value. This example is
analytically tractable for h(x) = 1, and Figure 1 plots mean squared error (MSE), as n and
σ vary.

Figure 1(a) demonstrates the increasing value of truncation as the tail of the proposal
distribution becomes an increasingly poor approximation to the tail of the target distribu-
tion. The choice of τn = n1/2 performs well in the finite sample situation investigated
in Figure 1(a), with an MSE closely matching oracle truncation. However, to make a fair
comparison of truncation rates, one must vary n, since the rate β is inseparable from the
constant C when n is fixed.

Figure 1(b) takes a value σ = 0.75, and looks at the effect of varying n. At σ = 0.75,
truncation is starting to make a marked difference though the untruncated estimator still
has finite variance. For β = 0.25 bias eventually overwhelms variance, producing poor
results at large values of n. Selecting β = 0.75 results in too little variance reduction.
The asymptotically optimal truncation rate, identified in Section 3 Case (ii), is at or near
β = 1 − σ 2 = 0.438. MURE, β = 0.5 and β = 1 − σ 2 all result in comparable MSEs, a
little larger than that for oracle truncation.

7. EXAMPLE: INFERENCE FOR DIFFUSIONS

Likelihood-based inference for diffusion processes observed at discrete time points has
received considerable attention (Elerian et al. 2001; Roberts and Stramer 2001; Durham
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Figure 1. (a) The MSE of Hn for the example of Section 6, plotted as a function of σ with n = 1000. The
solid line (no truncation) has an asymptote at σ =

√
2/2 (dotted line). The dashed lines represent truncation rules

indicated in the key. Values of β correspond to truncation at τn = nβ . Oracle truncation corresponds to the MSE
minimized over all truncation levels. (b) The ratio of the MSE with truncation to the MSE without truncation,
plotted as a function of n with σ = 0.75 for various truncation rules given in the key.

and Gallant 2002; Aı̈t-Sahalia 2002; Beskos et al. 2006). Much previous work has empha-
sized one-dimensional diffusions, with methods that are difficult to apply to a broad class
of multivariate diffusions. We consider an importance sampling approach to multivariate
diffusions, also allowing for the possibility of unobserved components and/or measure-
ment error. Our approach is essentially a multivariate extension of Durham and Gallant
(2002). Truncated importance sampling facilitates the use of a proposal distribution aris-
ing from a linearization which is relatively immediate to apply to nonlinear multivariate
diffusions with non-Gaussian measurement models. We first describe a general framework
for inference from partially observed multivariate diffusions. In Section 7.1, we present
a simulation study investigating the use of truncated importance sampling to evaluate the
likelihood for a model arising from disease dynamics of cholera. In the fields of ecology
and epidemiology, there is a need for development of methodology to permit inference for
flexible classes of continuous time models (Bjørnstad and Grenfell 2001).

Suppose xt is a diffusion in Rp given by the Itô solution to the stochastic differential
equation (SDE)

dxt = μt (xt ) dt + σt (xt ) dWt , (7.1)

where Wt is Brownian motion in Rq and σt is a p×q matrix, giving rise to the infinitesimal
variance 6t = σtσ

T
t . Observations {yk} occur at discrete times, say k = 1, . . . , K . We sup-

pose that yk ∈ Rr , and that yk given xk consists of a draw from some density fY |X (y|xk).
To solve a nonlinear SDE we use the Euler method (Kloeden and Platen 1999), where each
time interval is discretized into N equal subintervals, each of length δ = 1/N . The SDE is
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then replaced by a conditionally Gaussian stochastic difference equation,

Xt+δ ∼ N [Xt + δμt (Xt ), δ6t (Xt )]. (7.2)

It may be appropriate to take (7.2), with sufficiently small δ, as the model of interest for a
statistical application. This avoids the issue of how well (7.2) approximates (7.1), though
the approximation is known to become increasingly accurate as δ → 0 under general
conditions (Kloeden and Platen 1999). An importance sampling approach to calculating
the likelihood of a single observation yk conditional on xk−1 (surveyed by Durham and
Gallant 2002) is to carry out Monte Carlo evaluation of

H = Eμ,6[ fY |X (yk |Xk)|Xk−1 = xk−1], (7.3)

where Eμ,6 denotes expectation with Xt solving (7.2). The importance sampling paradigm
involves sampling from a different difference equation, replacing μt (∙) and 6t (∙) in (7.2)
by νt (∙) and 9t (∙), respectively. The corresponding importance sampling identity is

H = Eν,9




{ N−1∏

j=0

φ(X[ j+1] − X[ j] ; δμ[ j], δ6[ j])

φ(X[ j+1] − X[ j] ; δν[ j], δ9[ j])

}
fY |X (yk |Xk)



 , (7.4)

where φ(∙; μ,6) is the multivariate Gaussian density function with mean μ and covariance
matrix 6, X[ j] = Xk−1+ jδ , ν[ j] = νk−1+ jδ(Xk−1+ jδ), and 9[ j] = 9k−1+ jδ(Xk−1+ jδ). By
choosing νt and 9t carefully, one may hope for considerable gains over the naive proposal
distribution given by νt = μt and 9t = 6t . A desirable choice of νt and 9t would come
from conditioning {xt , k − 1 ≤ t ≤ k} on yk . The resulting conditional diffusion solves an
SDE with the same infinitesimal variance as (7.1) but with a modified drift term, say

dxt = μ̂t (xt ) dt + σt (xt ) dWt .

Although μ̂ cannot usually be readily calculated, the conditioning can be carried out ana-
lytically if μt and σt are approximated to be constant and fY |X (y|x) is approximated by a
conditional Gaussian density, φ(y; Ax + B,2). The matrices A and 2 and the vector B
can be functions of xt and t . We take νt to be the drift of the resulting diffusion,

νt (xt ) = μt + 6T
t AT (A6T

t AT (k − t) + 2)−1(yk − A(xt + (k − t)μt ) − B). (7.5)

This is a multivariate version of the zeroth order linearization of Roberts and Stramer
(2001), and may be derived by standard calculations for multivariate normal random vari-
ables. If 9[ j] = 6[ j], then the importance weight in (7.4) is a Riemann sum discretization
of the Radon–Nikodym derivative, given by Girsanov’s Theorem (Øksendal 1998), be-
tween two diffusion processes with infinitesimal drifts μt and νt . We take

9[ j] =

{
6[ j] for j = 0, . . . , N − 2,

6[N−1] − δ6[N−1] AT (A6[N−1] AT δ + 2)−1 A6[N−1] for j = N − 1.
(7.6)
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The modified estimate in the last subinterval is similar to a refinement introduced by
Durham and Gallant (2002, Section 4); the substantial gains they reported from this re-
finement are in agreement with the author’s experience.

The naive proposal distribution becomes arbitrarily inefficient as the measurement error
of the observations becomes small (i.e., as the density fY |X (y|x) approaches singularity).
However, the linearization in (7.5) and (7.6) also becomes increasingly poor as xt becomes
increasingly nonlinear. Thus, the use of truncated importance sampling may become ben-
eficial. Section 7.1 demonstrates one example of such a situation.

The importance sampling situation in (7.3) is an example of the second motivation
given in Section 1, where the naive proposal may have intolerable Monte Carlo variability.
Another problem of interest for this model is inference about unobserved variables given
the data. One might look to find

E[h(Xk)|xk−1, yk] =
∫

h(x) fXk |Xk−1,Yk (x |xk−1, yk)dx (7.7)

with, for example, h(x) = x or h(x) = x2. This falls into the first motivation, since sam-
pling from fXk |Xk−1,Yk (x |xk−1, yk) is difficult. The proposal distribution developed above
for (7.3) would also be well suited for (7.7), unless h(x) puts heavy emphasis on the tails
of fXk |Xk−1,Yk (x |xk−1, yk).

The joint likelihood of multiple observations is required for likelihood-based analysis
of time series data, and this can be obtained by sequential importance sampling (Gordon
et al. 1993; Liu and Chen 1998; Liu 2001; Arulampalam et al. 2002). Sequential impor-
tance sampling involves a sequence of dependent importance sampling calculations. Trun-
cation of importance weights can be carried out at each step in the sequence, using the
above method for each observation interval. Section 7.1 gives an illustration of inference
carried out by sequential importance sampling with truncation.

7.1 A POPULATION MODEL FOR CHOLERA

Cholera is endemic to northeast India and Bangladesh, and has recently become es-
tablished in Africa, South America, and elsewhere in south Asia (Sack et al. 2004). The
disease is caused by a bacterium, Vibrio cholerae, which can flourish in warm coastal wa-
ters. The role of ecosystems and climate are not fully understood. Challenges in unraveling
the epidemiology/ecology include the nonlinear dynamics of the disease and the uncertain
role of immunity. We consider a model for cholera dynamics that is a continuous time
version of a discrete time compartment model considered by Koelle and Pascual (2004),
following a similar discrete time model for measles by Finkenstädt and Grenfell (2000).
Discrete time models have some features that are accidents of the discretization. Working
in continuous time avoids this, and also in principle allows inclusion of covariates mea-
sured at various time intervals.

Compartment models are a basic tool for quantitative analysis of population dynam-
ics (Kermack and McKendrick 1927; Bartlett 1960; Diekmann and Heesterbeek 2000). A
basic epidemiological compartment model has Nt individuals divided into three groups,
with St denoting the number susceptible, It the number infected (and infectious), and Rt
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the number recovered or removed. Compartment models can be discrete time or continu-
ous time, deterministic or stochastic, discrete population or continuous population. The real
world is stochastic with a discrete population and continuous time. Imagining a continuous-
valued population permits an approach of writing down stochastic differential equations,
which have interpretable coefficients and allow a flexible modeling framework: the method
allows covariates, or other modeling features such as additional compartments, to be added.
We consider the following model, with xt = (St , It , Rt )

T

dxt =






dSt

d It

d Rt




 =






−1 0 1
1 −1 0
0 1 −1











μSI
t dt + σ SI

t dW SI
t

μI R
t dt + σ I R

t dW I R
t

μRS
t dt + σ RS

t dW RS
t




 (7.8)

μSI
t = (βt It + θ)St/Nt σ SI

t = αμSI
t

μI R
t = γ It σ I R

t =
√

μI R
t

μRS
t = m Rt σ RS

t =
√

μRS
t

βt = b0(1 + b1 cos(2π t/12))

The population variables St , It , and Rt are unobserved; Nt is treated as known, from census
data; monthly case reports {yk, k = 1, . . . , K } are observed. The observations process is
taken to have over-dispersed binomial variation, modeled as yk = ρ Ik +(ρ(1 − ρ)Ik)

1/2ξk ,
where ξk is a Student’s t random variable on τ degrees of freedom. A linear approximation
to this observation equation for (7.5) and (7.6) is A = (0, ρ, 0), B = 0 and 2 = Itρ(1 −
ρ)τ/(τ − 2).

A fundamental issue for inference concerning population dynamics is calculating the
likelihood of the data {yk}. Figure 2 demonstrates likelihood calculation via truncated im-
portance sampling for a single observation. Figure 2(a) shows how importance sampling
ensures that Monte Carlo simulations are consistent with the data. Figure 2(b) compares the
effect of different truncation rules. Similarly to Figure 1, truncation at τn = n0.25 results in
excessive bias for large n, whereas MURE and τn = n1/2 have an effect comparable to or-
acle truncation. For small sample sizes in Figure 2(b), τ̂ outperforms the oracle truncation
level, τ̃ . This is possible because τ̂ is a random variable whereas τ̃ only provides the min-
imum risk over nonrandom thresholds. From the evidence that truncation makes a marked
improvement, we deduce that the linearization used for the proposal distribution may not be
a good approximation for the tails of the target distribution, but that truncated importance
sampling allows more effective use of this imperfect approximation. For a model of this
fairly modest complexity it is not clear how else to get a superior approximation to the tar-
get distribution to avoid the need for truncation. Even if one could do this for some specific
model, linearization and truncated importance sampling is a general technique that makes
it routine to add extra features to the model, such as a sequence of different compartments
for decreasing levels of immunity.

Figure 3 illustrates likelihood-based inference for time series data. Figure 3(a) shows
historical cholera mortality time series analyzed at greater length by Koelle and Pascual
(2004). This is used to motivate the simulation results in Figures 3(b) and (c). Sequential
importance sampling was carried out, with truncation applied to the importance weights at
each step in the sequence. Based on the results in Figure 2, a truncation level of τn = n1/2
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Figure 2. Investigation of a single observation interval, from March to April, for the model in (7.8) with Nt =
2.5 × 106, α = 0.2, b0 = 1.2, b1 = 0.8, γ = 1, θ = 25, m = 1/30, ρ = 0.1, τ = 6. The parameters were chosen
by analogy with the discrete time model of Koelle and Pascual (2004), combined with some trial and error. The
goal is to find the likelihood of y4 = 2600 given S3 = 0.85N3 and I3 = 0.005N3. (a) Ten sample paths for the
number of infected individuals, for the naive proposal distribution (solid lines) and the proposal distribution given
by (7.5) and (7.6) (dotted lines). The discrete time step used to solve the SDE was δ = 0.1. (b) Relative mean
squared errors of various truncation rules for estimating the likelihood of y4 via importance sampling. Values of β

correspond to truncation at τn = nβ . Results were calculated using an importance sample of size 2 × 106, which
was treated as an entire population for the purposes of determining the “true” likelihood value and hence the MSE
of a subsample of size n at a given truncation level. Oracle truncation corresponds to the MSE minimized over all
truncation levels. The MSE for MURE was based on 5,000 subsamples, each of size n, from this population.

was used. The unbiased risk estimate of Section 5 is not directly applicable due to the de-
pendence introduced by sequential importance sampling. Perhaps the most direct strategy
for inference via sequential importance sampling is to estimate the likelihood surface, as in
Figure 3(c). A local quadratic approximation of the log-likelihood (Ionides 2005) can be
used to construct confidence intervals, as shown here, or combined with a prior distribu-
tion to give a Bayesian analysis. The parameter θ investigated in Figure 3(c) corresponds
to a rate of infection independent of the current number of infected individuals, which may
be interpreted as an environmental reservoir of the disease. The flat likelihood suggests
that, in the context of the model (7.8), the data contain rather little information about the
parameter θ . Monte Carlo variability much larger than one unit of log-likelihood makes
likelihood based inference difficult or impossible. Bias in estimating the log-likelihood is
of negligible importance for inference if it is a slowly varying function of θ , suggesting
that a lower truncation level might be effective.

Previous methodology has been developed to avoid the need to reconstruct the likeli-
hood surface from noisy Monte Carlo estimates. Many of these techniques are less broadly
applicable than likelihood reconstruction (Hürzeler and Künsch 2001; Cappé et al. 2005;
Beskos et al. 2006), and cannot readily be applied to the general multivariate nonlinear
diffusion framework of Section 7. Methods that employ basic sequential Monte Carlo tech-
niques for parameter estimation by judiciously adding stochasticity to the parameters (Liu
and West 2001; Ionides et al. 2006) could be applied in situations such as Section 7, and
could also potentially benefit from truncation of importance weights.
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Figure 3. (a) Historical data on monthly cholera mortality for Dhaka, Bangladesh. (b) One realization from
(7.8) with parameter values given in Figure 2. The model captures the key features of seasonal variation with
immunity-driven inter-annual variation. Features present in the data that could be incorporated into the model
include two peaks per year (the model has one) and nonstationarity (the population of Dhaka increased from
2.5 × 106 to 4 × 106 over this time period, suggesting corresponding changes in infection rate and/or the chance
of an infection leading to death). (c) The log-likelihood, λ(θ), estimated for the simulated data by smoothing
the likelihood evaluations (shown as points) arising from truncated importance sampling with n = 1000 and
τn = n1/2. Local quadratic smoothing was recommended in this context by Ionides (2005), and was implemented
here using the loess procedure in R (R Development Core Team 2006). Dashed lines show the construction
of the maximum likelihood estimate θ̂ = arg max λ(θ) and an approximate 95% confidence interval given by
{θ : λ(θ̂) − λ(θ) < (1/2)χ2

0.95(1)} where χ2
0.95(1) is the 0.95 quantile of a chi-squared random variable on 1

degree of freedom.

8. DISCUSSION

Heuristically, truncation is effective because it follows the principle of not trying to
estimate that which cannot be estimated well. Being instructed to ignore difficulties is
pleasant advice to follow, and so truncation of importance weights should become a stan-
dard technique for those who practice Monte Carlo importance sampling. Other statistical
examples of this principle are naive Bayes (Bickel and Levina 2004), wavelet thresholding
(Donoho and Johnstone 1994), and perhaps shrinkage techniques in general. An analogy
with soft wavelet thresholding suggests using soft truncation for importance sampling, say
w′ = γw + (1 − γ )τn with γ = 1/(1 + eα(w−τn)) for some α > 0.

The minimum mean squared error is not a perfect criterion for evaluating Monte Carlo
procedures. For some purposes the variance is more critical than the bias, and in these situ-
ations truncation is particularly attractive. One example is the likelihood surface estimation
in Section 7.1. Maximum likelihood estimation is a specific case of the more general goal
of finding some parameter θ maximizing H(θ) =

∫
h(x, θ) f (x, θ)dx , for which the bias

may be relatively unimportant as long as it varies slowly with θ . For parameter estima-
tion, even if the size of the bias is unknown, the success of a method can be assessed
by attempting to recover known parameters from simulated data. This could be used to
investigate a good choice of C and/or β for truncation at τn = Cnβ . Alternatively, the
MSE of parameter estimation could replace the MSE of estimating H as a criterion for
selecting a truncation level at a particular value of n. In other situations, such as pricing
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financial options (Glasserman et al. 1999), bias is certainly relevant and assessing the suc-
cess of truncation may be more problematic. Truncation makes the most difference when
the unbiased, standard importance sampling estimator is unreliable. This is exactly the
situation where estimating the bias due to truncation is difficult. If the truncated impor-
tance sampling estimate were markedly different from the untruncated estimate, one might
want to start looking for a better proposal distribution. Meanwhile, until a better proposal
is found, the truncated importance sampling estimate should be more reliable as long as
mean squared error is a relevant quantity.

Sequential importance sampling, as employed in Section 7.1, is one example of a
situation where truncation can be applied as an extension of the basic importance sam-
pling problem in (1.1). Another variation of importance sampling arises when only un-
normalized weights w̃i = cwi are available, with c an unknown constant. Standard practice
is to self-normalize these weights, replacing (1.1) by

∑n
i=1 h(Xi )w̃i {

∑n
j=1 w̃ j }−1. Trun-

cation is appropriate for both the numerator and denominator of this ratio estimator (see
Appendix B for more details).

Truncation is not a panacea that will enable successful importance sampling using a
very poor choice of proposal distribution. Truncation does allow the successful use of some
proposal distributions whose poor approximations to the tails of the target distribution
would otherwise render them useless. This is particularly relevant in complex stochastic
models, where finding a proposal distribution that is everywhere a good approximation
to the target may be challenging. Sensitivity to the choice of proposal distribution has
been cited as a major drawback of importance sampling (Glasserman et al. 1999) and
sometimes a considerable amount of work has gone into refining a proposal distribution
to make it practically useful (Stephens and Donnelly 2000). By reducing the sensitivity
to the proposal distribution, truncation should make importance sampling more readily
applicable to new problems.

APPENDICES

A. MORE ON ASYMPTOTIC NORMALITY

We present two propositions giving sufficient conditions for averages of independent
truncated random variables to have a Gaussian limit distribution. Proposition 1 gives a
general Gaussian limit result for truncation at rates less than or equal to n1/2. Proposition 2
gives a similar result for a broader range of truncation rates under more specific conditions.
When translated into the context of truncated importance sampling, these propositions give
rise to Theorems 1 and 2 of Section 4.

Proposition 1. Let {Zn, n = 1, 2, . . .} be a sequence of independent, identically
distributed random variables with finite expectation, E [Zk] = μ. Let τn be a sequence
for which τnn−1/2 is bounded and limn→∞ τn = ∞. Define Ynk = (Zk ∧ τn) ∨ −τn,
μn = E[Ynk] and σ 2

n = var(Ynk). Then, for all α,

lim
n→∞

P
[ 1

σn
√

n

n∑

k=1

(Ynk − μn) < α
]

=
∫ α

−∞

1
√

2π
e−z2/2dz. (A.1)
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Proof: We make use of necessary and sufficient conditions for a Gaussian limit of
sums in a triangular array of independent random variables provided by Gnedenko and
Kolmogorov (1954, Section 26, Theorem 2). In the present context, the conditions are that,
for all ε > 0,

lim
n→∞

n P
[ |Ynk − μn|

σn
√

n
< ε

]
= 0 (A.2)

lim
n→∞

var
(Ynk

σn
I
{ |Ynk − μn|

σn
√

n
< ε

})
= 1, (A.3)

where I {A} is an indicator random variable, taking value 1 if A occurs and 0 otherwise.
If var(Zk) = ∞, then limn→∞ σn = ∞. Since there is a C with |Ynk | ≤ Cn1/2, we

have, for all sufficiently large n, |Ynk − μn|/(σn
√

n) < ε. This implies (A.2), and (A.3)
then follows from the definition of σn . Alternatively, consider the case var(Xk) = σ 2 < ∞
with limn→∞ σ 2

n = σ 2. In this case, (A.1) describes a standard central limit result with rate
√

n. To check (A.2), notice that var(Zk) < ∞ implies that limx→∞ x−2 P[|Zk | > x] = 0.
Dominated convergence gives limn→∞ var[Ynk I {|Ynk −μn| < εσn

√
n}] = σ 2 from which

(A.3) follows.

Theorem 1 of Section 4 follows from Proposition 1 by setting Zi = h(Xi )w(Xi ) (for
H ′′

n ) and Zi = w(Xi ) (for H ′
n).

Proposition 2. Adopt the notation of Proposition 1 but replace the bound on τnn−1/2

with a requirement that limn→∞ τnn−1/(1+α) = 0 for some 0 < α < 1. If Zk has a density
f (z) with tail behavior f (|z|) ∼ |z|−(2+α) for 0 < α < 1 then the Gaussian limit in (A.1)
holds.

Proof: From Section 3, we know σ 2
n ∼ τ 1−α

n . Conditions (A.2) and (A.3) hold
immediately if limn→∞ τn

/
(σn

√
n) = 0, which is equivalent to limn→∞ τnn−1/(1+α) = 0.

Theorem 2 of Section 4 follows from Proposition 2 by setting Zi = w(Xi ).

B. SELF-NORMALIZED WEIGHTS

In Monte Carlo Markov chain methodology, the importance weights are only calculated
up to an unknown constant, w̃i = cwi . This motivates the analysis of the truncated self-
normalized estimator

H̃n =
(1/n)

∑n
i=1 h(Xi )(w̃i ∧ τ N

n )

(1/n)
∑n

i=1(w̃i ∧ τ D
n )

. (B.1)

Denote the numerator and denominator of (B.1) as Nn and Dn , respectively. Nn and Dn

both have the form of truncated importance sampling estimates with respective truncation
thresholds τ N

n and τ D
n . Write E[Nn] = cH + an and E[Dn] = c + bn . If Nn and Dn have

a joint Gaussian limit distribution, as in Appendix A, then the Delta method (Rao 1973,
Section 6a.2) gives a Gaussian limit for H̃n . Specifically, H̃n is then asymptotically normal
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with mean and variance given by

μn = H + [an − Hbn]/c (B.2)

σ 2
n = [var(Nn) + H2var(Dn) − 2Hcov(Nn, Dn)]/c2 (B.3)

meaning that

lim
n→∞

P
[ H̃n − μn

σn
< α

]
=
∫ α

−∞

1
√

2π
e−z2/2dz.

The conditions for applying the Delta method here are limn→∞ an = 0, limn→∞ σn = 0
and bn = O(σn). The bias and variance in (B.2) and (B.3) have similar forms to the cor-
responding calculations for the basic truncated sampling estimator H ′

n . This suggests that
similar considerations apply to bias/variance tradeoffs for self-normalized estimators as for
the unnormalized estimators. In particular, truncation should be applied to both the numer-
ator and denominator of (B.1). In principle, the Delta method may allow the interpretation
of (B.2) and (B.3) as limiting moments, regardless of whether Nn and Dn have a Gaussian
limit (Oehlert 1992). However, bounding the moments of the Taylor series remainder is
technically more awkward than considering convergence in distribution.

The unknown constant c does not affect the analysis of asymptotic rates of truncation.
From a practical point of view, the unbiased risk estimator of Section 5 is scale-invariant
so may be applied to generate thresholds τ N

n and τ D
n for the numerator and denominator

of H̃n without the need to know c. Alternatively, a preliminary estimate of c could be used
to calibrate the truncation threshold. For example, setting ĉn = (1/n)

∑n
i=1 w̃i , one could

then calculate H̃n with τ N
n = τ D

n = ĉnn1/2.
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