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Discussion of “Feature Matching in Time
Series Modeling” by Y. Xia and H. Tong
Edward L. Ionides

Xia and Tong have made a novel contribution to the
debate on whether and how to carry out some sort of
feature matching in preference to a statistically effi-
cient alternative such as the maximum likelihood es-
timate (MLE). They show that an estimation criterion
emphasizing long-term predictions has some advan-
tages over the MLE on some misspecified time series
models. However, emphasizing long-term predictions
must lead to a down-weighting of higher-frequency in-
formation in the data. In particular, Xia and Tong’s
catch-all approach does not typically share the statis-
tical efficiency of MLE when the model fits the data
adequately. Further, it is necessarily the case (whatever
fitting method is used) that some scientific inferences
one might wish to conclude from fitting a misspeci-
fied model are statistically invalid. Scientific interpre-
tation of fitted parameter values and predictions using
a model that is a statistically poor match to the data
therefore requires considerable care. One seeks models
that are simultaneously scientifically relevant and pro-
vide an adequate statistical description of the data, and
then statistical efficiency becomes an important con-
sideration for drawing scientific conclusions from lim-
ited data. Flexible modern inference methods facilitate
the development and statistical analysis of such mod-
els. I will discuss these issues in the context of Xia and
Tong’s analysis of Nicholson’s blowfly data. Similar
considerations arise in their measles example, and have
been investigated by He, Ionides and King (2010).

Xia and Tong’s APE(≤1) estimate is equivalent to
the MLE only for a specific choice of stochastic model.
From their equation (3.12), we see that APE(≤1) cor-
responds to the MLE for additive, Gaussian, constant-
variance process noise with no measurement error.
For Xia and Tong’s blowfly model, the log-likelihood
at the APE(≤1) point estimate is −1568.5 whereas
the log-likelihood at the APE(≤T ) point estimate is
−1569.5. A chi-squared approximation indicates that
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a full likelihood-based analysis for this model should
consider the APE(≤1) and APE(≤T ) point estimates
to be both statistically plausible, since the difference
of 1.0 log units is not large compared to typical values
of 1/2 of a chi-squared random variable with five de-
grees of freedom. To check the extent to which either of
these point estimates provides a reasonable statistical
explanation of the data, I compared their goodness of
fit with that of a simple phenomenological model. For
oscillating populations, a log-ARMA model is an ap-
propriate choice (He, Ionides and King, 2010). I fitted
a stationary log-ARMA model to the 9th through 200th
data points for which predictions are made by Xia and
Tong’s model, in order to ensure that the resulting like-
lihood provides a fair comparison. A log-ARMA(2,2)

model gives a maximized log-likelihood of −1542.3
based on estimating six parameters. Xia and Tong’s
mechanistic model therefore explains the data consid-
erably more poorly (e.g., judged by Akaike’s infor-
mation criterion) than this simple black-box model.
Is it possible to preserve the scientific interpretability
of Xia and Tong’s model while also providing a sta-
tistically satisfactory explanation of the data? To ad-
dress this question, I fitted a dynamic model adapted
from Wood (2010) which has a similar structure to
the model of Xia and Tong but differs by formulat-
ing the stochasticity in a scientifically motivated way.
This alternative model is described in full in the Ap-
pendix below. I evaluated the likelihood by sequential
Monte Carlo and computed the MLE by iterated filter-
ing (Ionides, Bretó and King, 2006) implemented using
the pomp package for R (King et al., 2010). Maximiza-
tion over the six parameters led to a log-likelihood of
−1465.4. Figure 1 shows that the skeleton of this alter-
native model matches the periodicity in the data, a mea-
sure of fit which Xia and Tong chose to emphasize in
their Figure 8. The likelihood at the MLE also com-
fortably outperforms the log-ARMA(2,2) benchmark
so subsequent analysis can consider the model to be
adequately specified, at least to a first approximation.
Of course, the possibility of potential further advances
in the model specification cannot be ruled out. Indeed,
a careful and complete investigation would be expected
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FIG. 1. Deterministic skeleton for the partially observed stochastic dynamic model fitted to Nicholson’s blowfly data by maximum likelihood
(solid line) and the data (dashed line).

to reveal some aspects of this improved model that are
a statistically significant mismatch to the data.

The analysis above may suggest that choice of
model is more important than the specific choice of
inference methodology. However, model development
is facilitated by statistical methodology that is appro-
priate for general classes of models (so that the scien-
tist is not constrained by the methodology when de-
veloping models) and which is convenient for quan-
titative comparisons between models. Xia and Tong’s
APE(≤1) and APE(≤T ) criteria are not appropriate
for nonstationary, partially observed dynamic systems
evolving in continuous time. These features are typical
of ecological and epidemiological systems (Bjørnstad
and Grenfell, 2001). Likelihood is quite generally ap-
plicable in theory, though feature-matching methodol-
ogy has previously been advocated to avoid the practi-
cal numerical issues of working with the likelihood for
dynamic models (Wood, 2010, and references therein).
Recently, calculation and maximization of the likeli-
hood function for general nonlinear, partially observed
dynamic models has become computationally routine
in many ecological dynamic systems (e.g., King et al.,
2008; He, Ionides and King, 2010; Laneri et al., 2010).

A criterion such as APE(≤T ) may help to emphasize
certain low-frequency (long time scale) features of the
data such as the periodicities in the blowfly population.
While this may be of scientific interest as a component
of a data analysis, it is not desirable as a complete anal-
ysis due to the obverse property of suppressing high-
frequency (short time scale) features. The efficiency of
the MLE corresponds to an optimal balance between
frequencies, in the specific sense of minimizing asymp-
totic variance of parameter estimates when the model
is correct. This balance between frequencies is perhaps

most clearly seen in the context of Whittle’s approx-
imation to the likelihood, discussed by Xia and Tong
in Section 2.2. Although the usual decomposition of
the likelihood for dynamic models appears to empha-
size one-step prediction, the combination of all one-
step predictions corresponds to an estimator which ef-
ficiently combines the contributions of all frequencies.
I shall argue that high-frequency features may be po-
tentially even more scientifically important than low-
frequency features.

Both the blowfly and measles examples involve ana-
lyzing mechanistic models that aim to explain the long-
term dynamics of the system in terms of models con-
structed to describe the short-term increments or tem-
poral derivatives (Brillinger, 2008; Bretó et al., 2009).
The APE(≤T ) estimate necessarily has a poorer fit
than the one-step APE(≤1) estimate, in a least squares
sense, to the short-term behavior that provides the sci-
entific rationale for the mechanistic model. Xia and
Tong’s blowfly example suggests that this property
can lead to a greater scientific interpretability of the
APE(≤1) parameter estimates. I consider each param-
eter in turn:

1. In the biological interpretation of Xia and Tong’s
model, c corresponds to the number of eggs laid per
adult blowfly per bi-day that develop into adults in
the absence of competition for food. From data on
eggs collected in this blowfly experiment (Brillinger
et al., 1980) we see that this biological quantity
peaked at c ≈ 20 in the troughs of the population
cycles. This matches closely the estimate ĉ1 = 20.1
via the APE(≤1) criterion. The APE(≤T ) estimate,
ĉT = 592, is an order of magnitude higher than this
biological interpretation permits.
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2. The original biological motivation for Xia and
Tong’s model had α = 1 (Gurney, Blythe and Nis-
bet, 1980) and a value slightly less than 1 has been
proposed when making a discrete-time approxima-
tion to a continuous dynamic system. The APE(≤1)
estimate α̂1 = 0.846 is consistent with this interpre-
tation, whereas the APE(≤T ) estimate α̂T = 0.263
is so far below unity that it requires a reinterpreta-
tion of the biological story behind the model.

3. Biologically, αN0 is the adult population size that
maximizes the total number of successfully-
developing eggs laid. Empirically, the adult popula-
tion size maximizing total egg production occurred
during troughs of adult abundance at successive val-
ues of 397, 542, 167, 2236, 2267, 539, 1308, 2363,
3806 and 254 adults for the ten cycles analyzed. The
APE(≤1) estimate α̂1N̂0,1 = 499 and the APE(≤T )
estimate α̂T N̂0,T = 344 are both broadly consistent
with this interpretation.

4. 2/(1 − ν) may be biologically interpreted as the
life expectancy of the blowfly adults. The estimates
2/(1 − ν̂1) = 8.33 and 2/(1 − ν̂T ) = 5.67 are both
broadly biologically plausible. Empirically, life ex-
pectancy decreased substantially when the adult
population was large (Brillinger et al., 1980; Gut-
torp, 1981), and so one must permit some flexibility
in the interpretation of the constant life expectancy
assumed by this model.

In conclusion, Xia and Tong’s APE(≤1) and
APE(≤T ) fits to the blowfly data are statistically more-
or-less equally valid. Both are handicapped by the
substantial misspecification of the fitted model. The
APE(≤T ) estimate fits the periodicity of the fluctua-
tions better but at the expense of the biological inter-
pretation of the fitted parameters. Superior models can
simultaneously satisfy each of these considerations.
If the model is adequately specified, likelihood-based
analysis provides a powerful set of tools for investigat-
ing the range of statistically plausible parameter val-
ues. If the model is poorly specified, likelihood pro-
vides a powerful framework for diagnosing the mis-
specification and a flexible framework for constructing
improved models.

APPENDIX: AN ALTERNATIVE BLOWFLY DATA
ANALYSIS

Let N(t) be the number of adult blowflies at time t .
Suppose that the number of newly emerging adults dur-
ing the time interval [t, t + �] is Rt , and the number
of adults surviving from time t to t + � is St , so that

N(t + �) = Rt + St . Suppose that Rt and St are con-
ditionally independent given N(t) and N(t − τ) with
conditional distributions

Rt ∼ Poisson[N(t − τ)P exp{−N(t − τ)/N0}�et ],
St ∼ Binomial[N(t), exp{−δ �εt }].

Here, et and εt are independent Gamma-distributed
random effects with mean 1 having respective vari-
ances σ 2

p�−1 and σ 2
d �−1. When � = 2 day this model

is similar to the model of Xia and Tong, with parame-
ters N0 and τ having matching interpretations and the
remaining parameters translating to α = 1, c ≈ 2P and
ν ≈ exp(−2δ). When � = 1 day this corresponds ex-
actly to the dynamic model of Wood (2010). Wood
(2010) employed a generalized method of simulated
moments to estimate parameters, but I shall instead
construct a partially observed Markov process (POMP)
model for which likelihood-based methods are avail-
able.

Supposing that � is chosen to divide τ , the above
construction defines a discrete-time Markov process
X(t) = (N(t),N(t − �),N(t − 2�), . . . ,N(t − τ)).
The choices � = 1 day and � = 2 day can then be
viewed as Euler approximations to a continuous-time
Markov process that is defined by taking the limit � →
0 (Bretó et al., 2009). To complete a POMP model, one
needs to specify initial conditions and a measurement
process. Write Nicholson’s recorded data as y1, . . . , yT

where yk gives the adult blowflies counted at time tk =
2k day, and T = 200. For comparison with Xia and
Tong, I fixed τ = 14 day and required that the model
should provide a likelihood for y9, y10, . . . , yT . The
initial state X(t8) can be constructed using y1, . . . , y8.
With � = 2 day, I chose to set N(tk) = yk for k ∈
{1, . . . ,8} rather than treating the initial conditions as
unknown parameters. For general �, I specified X(t8)

using a cubic spline interpolation of y1, . . . , y8.
My measurement model was yk ∼ Negbinom(N(tk),

σ−2
y ), a negative binomial distribution conditional

on N(tk) with mean N(tk) and variance N(tk) +
[σyN(tk)]2. Nicholson’s adult blowfly counts certainly
contained some error due to an inconsistency between
the counts of dead adults and newly emerging adults
that were used to infer the counts of living adults
(Brillinger et al., 1980). However, the uncertainty in the
measurement model necessary to provide a good sta-
tistical fit to the data has a more subtle interpretation.
The fertility of adults varies according to their age and
potentially for other unmodeled biological reasons. In
the scientific motivation of the process model, the pro-
cess model for N(t) may be interpreted as describing
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fertility (in units of ideal, standardized adults) rather
than simply measuring the actual number of adults.
The measurement error then includes fluctuations in
the calibration between the actual number of adults
present and their reproductive potential.

Likelihood-based inference for POMP models us-
ing iterated filtering has been described and discussed
elsewhere (Ionides, Bretó and King, 2006; King et
al., 2008; Ionides, Bretó and King, 2008; Bretó et al.,
2009; Bhadra, 2010; He, Ionides and King, 2010;
Laneri et al., 2010). This methodology involves em-
ploying sequential Monte Carlo techniques for eval-
uation and optimization of the likelihood function.
The dynamic process model enters the computations
only through the generation of sample paths at varying
values of the parameters. Methodology enjoying this
property has been called plug-and-play (Bretó et al.,
2009; He, Ionides and King, 2010) since it can be
implemented simply by plugging simulation code for
the process model into inference software. In particu-
lar, likelihood-based inference is possible even when
the likelihood function itself can be evaluated only by
Monte Carlo methods.

There was some indication that the alternative model
fits better for � = 1 day (maximized log-likelihood
of −1465.4) than for � = 2 day (maximized log-
likelihood of −1471.4). I did not investigate the in-
troduction of an exponent α that Xia and Tong pro-
posed to modify the effect of a large time discretization
step. One of the advantages of the POMP framework
is that it applies to continuous-time process models,
or models based on arbitrarily small time discretiza-
tions, which makes such modifications unnecessary
(Bretó et al., 2009). Here, there is little reason to pre-
fer the analysis with � = 2 day to � = 1 day. The
MLE for � = 1 day was P̂ = 3.28 day−1, N̂0 = 680,
δ̂ = 0.161 day−1, σ̂p = 1.35 day1/2, σ̂d = 0.747 day1/2

and σ̂y = 0.0266. All parameters are seen to be consis-
tent with the biological interpretation of the model. The
measurement uncertainty parameter, σy , is estimated to
be small so most of the stochasticity is assigned to vari-
ability in the dynamic process.
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