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Iterated filtering algorithms are stochastic optimization procedures
for latent variable models that recursively combine parameter
perturbations with latent variable reconstruction. Previously,
theoretical support for these algorithms has been based on
the use of conditional moments of perturbed parameters to ap-
proximate derivatives of the log likelihood function. Here, a theo-
retical approach is introduced based on the convergence of
an iterated Bayes map. An algorithm supported by this theory
displays substantial numerical improvement on the computa-
tional challenge of inferring parameters of a partially observed
Markov process.

sequential Monte Carlo | particle filter | maximum likelihood |
Markov process

An iterated filtering algorithm was originally proposed for
maximum likelihood inference on partially observed Markov

process (POMP) models by Ionides et al. (1). Variations on
the original algorithm have been proposed to extend it to
general latent variable models (2) and to improve numerical
performance (3, 4). In this paper, we study an iterated filtering
algorithm that generalizes the data cloning method (5, 6) and
is therefore also related to other Monte Carlo methods for
likelihood-based inference (7–9). Data cloning methodology
is based on the observation that iterating a Bayes map con-
verges to a point mass at the maximum likelihood estimate.
Combining such iterations with perturbations of model
parameters improves the numerical stability of data cloning
and provides a foundation for stable algorithms in which the
Bayes map is numerically approximated by sequential Monte
Carlo computations.
We investigate convergence of a sequential Monte Carlo im-

plementation of an iterated filtering algorithm that combines
data cloning, in the sense of Lele et al. (5), with the stochastic
parameter perturbations used by the iterated filtering algorithm
of (1). Lindström et al. (4) proposed a similar algorithm, termed
fast iterated filtering, but the theoretical support for that algo-
rithm involved unproved conjectures. We present convergence
results for our algorithm, which we call IF2. Empirically, it can
dramatically outperform the previous iterated filtering algorithm
of ref. 1, which we refer to as IF1. Although IF1 and IF2 both in-
volve recursively filtering through the data, the theoretical justifi-
cation and practical implementations of these algorithms are
fundamentally different. IF1 approximates the Fisher score
function, whereas IF2 implements an iterated Bayes map. IF1
has been used in applications for which no other computa-
tionally feasible algorithm for statistically efficient, likelihood-
based inference was known (10–15). The extra capabilities of-
fered by IF2 open up further possibilities for drawing infer-
ences about nonlinear partially observed stochastic dynamic
models from time series data.
Iterated filtering algorithms implemented using basic sequential

Monte Carlo techniques have the property that they do not need
to evaluate the transition density of the latent Markov process.

Algorithms with this property have been called plug-and-play (12,
16). Various other plug-and-play methods for POMP models have
been recently proposed (17–20), due largely to the convenience of
this property in scientific applications.

An Algorithm and Related Questions
A general POMP model consists of an unobserved stochastic
process fXðtÞ; t≥ t0g with observations Y1; . . . ;YN made at times
t1; . . . ; tN . We suppose that XðtÞ takes values in X⊂RdimðXÞ, Yn
takes values in Y⊂RdimðYÞ, and there is an unknown param-
eter θ taking values in Θ⊂RdimðΘÞ. We adopt notation ym:n =
ym; ym+1; . . . ; yn for integers m≤ n, so we write the collection of
observations as Y1:N . Writing Xn =XðtnÞ, the joint density of
X0:N and Y1:N is assumed to exist, and the Markovian prop-
erty of X0:N together with the conditional independence of
the observation process means that this joint density can be
written as

fX0:N ;Y1:N ðx0:N ; y1:N  ; θÞ
= fX0ðx0  ; θÞ

QN
n=1

fXn jXn− 1ðxnjxn−1  ; θÞfYnjXnðynjxn  ; θÞ:

The data consist of a sequence of observations, y1:N* . We write
fY1:N ðy1:N   ; θÞ for the marginal density of Y1:N , and the likelihood
function is defined to be ℓðθÞ= fY1:N ðy1:N*   ; θÞ. We look for a max-
imum likelihood estimate (MLE), i.e., a value θ̂ maximizing ℓðθÞ.
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The IF2 algorithm defined above provides a plug-and-play
Monte Carlo approach to obtaining θ̂. A simplification of IF2
arises when N = 1, in which case, iterated filtering is called
iterated importance sampling (2) (SI Text, Iterated Importance
Sampling). Algorithms similar to IF2 with a single iteration
ðM = 1Þ have been proposed in the context of Bayesian inference
(21, 22) (SI Text, Applying Liu and West’s Method to the Toy
Example and Fig. S1). When M = 1 and hnðθjφ  ; σÞ degenerates
to a point mass at φ, the IF2 algorithm becomes a standard
particle filter (23, 24). In the IF2 algorithm description, ΘF;m

n;j
and XF;m

n;j are the jth particles at time n in the Monte Carlo
representation of the mth iteration of a filtering recursion. The
filtering recursion is coupled with a prediction recursion, rep-
resented by ΘP;m

n;j and XP;m
n;j . The resampling indices k1:J in IF2

are taken to be a multinomial draw for our theoretical analysis,
but systematic resampling is preferable in practice (23). A
natural choice of hnðθjφ  ; σÞ is a multivariate normal density
with mean φ and variance σ2Σ for some covariance matrix Σ,
but in general, hn could be any conditional density parame-
terized by σ. Combining the perturbations over all of the time
points, we define

hðθ0:N jφ  ; σÞ= h0ðθ0jφ ; σÞ
YN
n=1

hnðθnjθn−1  ; σÞ:

We define an extended likelihood function on ΘN+1 by

ℓ
^ðθ0:NÞ=

Z
. . .

Z
dx0 . . . dxN

�
fX0ðxo   ; θ0Þ

×
QN
n=1

fXnjXn− 1ðxnjxn−1  ; θnÞfYnjXn

�
y*n
��xn  ; θn�

�
:

Each iteration of IF2 is a Monte Carlo approximation to
a map

Tσ f ðθNÞ=

Z
ℓ
^ðθ0:NÞhðθ0:N jφ  ; σÞf ðφÞdφ  dθ0:N−1Z
ℓ
^ðθ0:NÞhðθ0:N jφ  ; σÞf ðφÞdφ  dθ0:N

; [1]

with f and Tσ f approximating the initial and final density of the
parameter swarm. For our theoretical analysis, we consider the
case when the SD of the parameter perturbations is held fixed at
σm = σ > 0 for m= 1; . . . ;M. In this case, IF2 is a Monte Carlo
approximation to TM

σ f ðθÞ. We call the fixed σ version of IF2
“homogeneous” iterated filtering since each iteration imple-
ments the same map. For any fixed σ, one cannot expect a pro-
cedure such as IF2 to converge to a point mass at the MLE.
However, for fixed but small σ, we show that IF2 does approx-
imately maximize the likelihood, with an error that shrinks to
zero in a limit as σ→ 0 andM→∞. An immediate motivation for
studying the homogeneous case is simplicity; it turns out that
even with this simplifying assumption, the theoretical analysis
is not entirely straightforward. Moreover, the homogeneous anal-
ysis gives at least as much insight as an asymptotic analysis into
the practical properties of IF2, when σm decreases down to some
positive level σ > 0 but never completes the asymptotic limit
σm → 0. Iterated filtering algorithms have been primarily devel-
oped in the context of making progress on complex models for
which successfully achieving and validating global likelihood
optimization is challenging. In such situations, it is advisable
to run multiple searches and continue each search up to the
limits of available computation (25). If no single search can
reliably locate the global maximum, a theory assuring conver-
gence to a neighborhood of the maximum is as relevant as a
theory assuring convergence to the maximum itself in a prac-
tically unattainable limit.
The map Tσ can be expressed as a composition of a parameter

perturbation with a Bayes map that multiplies by the likelihood
and renormalizes. Iteration of the Bayes map alone has a central
limit theorem (CLT) (5) that forms the theoretical basis for the
data cloning methodology of refs. 5 and 6. Repetitions of the pa-
rameter perturbation may also be expected to follow a CLT. One
might therefore imagine that the composition of these two oper-
ations also has a Gaussian limit. This is not generally true, since the
rescaling involved in the perturbation CLT prevents the Bayes map
CLT from applying (SI Text, A Class of Exact Non-Gaussian Limits
for Iterated Importance Sampling). Our agenda is to seek conditions
guaranteeing the following:

(A1) For every fixed σ > 0, limm→∞Tm
σ f = fσ exists.

(A2) When J and M become large, IF2 numerically approxi-
mates fσ .

(A3) As the noise intensity becomes small, limσ→0 fσ approaches
a point mass at the MLE, if it exists.

Stability of filtering problems and uniform convergence of
sequential Monte Carlo numerical approximations are closely
related, and so A1 and A2 are studied together in Theorem 1.
Each iteration of IF2 involves standard sequential Monte Carlo
filtering techniques applied to an extended model where latent
variable space is augmented to include a time-varying param-
eter. Indeed, all M iterations together can be represented as
a filtering problem for this extended POMP model on M rep-
lications of the data. The proof of Theorem 1 therefore leans
on existing results. The novel issue of A3 is then addressed in
Theorem 2.

Convergence of IF2
First, we set up some notation. Let fΘ^m

0:N ;m= 1; 2; . . . g be a
Markov chain taking values in ΘN+1 such that Θ

^1
0:N has den-

sity
R
hðθ0:N jφ  ; σÞf ðφÞdφ, and Θ

^m
0:N has conditional density

Algorithm IF2. Iterated filtering

input:
Simulator for fX0 ðx0  ; θÞ
Simulator for fXn jXn−1

ðxnjxn−1  ; θÞ, n in 1 : N
Evaluator for fYn jXn ðynjxn   ; θÞ, n in 1 : N
Data, y1:N*

Number of iterations, M
Number of particles, J
Initial parameter swarm, fΘ0

j ,j in  1 : Jg
Perturbation density, hnðθjφ  ; σÞ, n in 1 : N
Perturbation sequence, σ1:M

output: Final parameter swarm, fΘM
j ,j in  1 : Jg

For m in 1 : M
ΘF,m

0,j ∼h0ðθjΘm−1
j   ; σmÞ for j in 1 : J

XF,m
0,j ∼ fX0 ðx0;ΘF,m

0,j Þ for j in 1 : J
For n in 1 : N

ΘP,m
n,j ∼hnðθjΘF,m

n−1,j ,σmÞ for j in 1 : J

XP,m
n,j ∼ fXn jXn−1

�
xnjXF,m

n−1,j ;Θ
P,m
j

�
for j in 1 : J

wm
n,j = fYn jXn

�
y*n

���XP,m
n,j ;ΘP,m

n,j

�
for j in 1 : J

Draw k1:J with Pðkj = iÞ=wm
n,i=

PJ
u=1w

m
n,u

ΘF,m
n,j =ΘP,m

n,kj
and XF,m

n,j =XP,m
n,kj

for j in 1 : J
End For
Set Θm

j =ΘF,m
N,j for j in 1 : J

End For
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hðθ0:N jφN  ; σÞ given Θ
^m−1

0:N =φ0:N for m≥ 2. Suppose that fΘ^m
0:N ;

m≥ 1g is constructed on the canonical probability space Ω=
fðθ10:N ; θ20:N ; . . .Þg with θm0:N =Θ

^m
0:NðϑÞ for ϑ= ðθ10:N ; θ20:N ; . . .Þ∈Ω.

Let fFmg be the corresponding Borel filtration. To consider
a time-rescaled limit of fΘ^m

0:N ;m= 1; 2; . . . g as σ→ 0, let
fWσðtÞ; t≥ 0g be a continuous-time, right-continuous, piece-
wise constant process defined at its points of discontinuity
by Wσðkσ2Þ=Θ

^k+1
N when k is a nonnegative integer. Let

fZ^m
0:N ;m= 1; 2; . . . g be the filtered process defined such that,

for any event E∈FM ,

P
Z
^ðEÞ=

E
Θ
^

h
ℓ
^

1:MIE
i

E
Θ
^

h
ℓ
^

1:M

i ; [2]

where IE is the indicator function for event E and

ℓ
^

1:MðϑÞ=
YM
m=1

ℓ
^�

θm0:N
�
:

In Eq. 2 , P
Z
^ðEÞ denotes probability under the law of fZ^m

n g, and
E
Θ
^ denotes expectation under the law of fΘ^m

n g. The process

fZ^m
n g is constructed so that Z

^m
N has density Tmf . We make the

following assumptions.

(B1) fWσðtÞ; 0≤ t≤ 1g converges weakly as σ→ 0 to a diffusion
fW ðtÞ; 0≤ t≤ 1g, in the space of right-continuous functions
with left limits equipped with the uniform convergence topol-
ogy. For any open set A⊂Θ with positive Lebesgue measure
and e> 0, there is a δðA; eÞ> 0 such that P½W ðtÞ∈A for
all e≤ t≤ 1jW ð0Þ�> δ.

(B2) For some t0ðσÞ and σ0 > 0,WσðtÞ has a positive density on Θ,
uniformlyover thedistributionofW ð0Þ for all t> t0 andσ < σ0.

(B3) ℓðθÞ is continuous in a neighborhood fθ : ℓðθÞ> λ1g for
some λ1 < supφℓðφÞ.

(B4) There is an e> 0 with e−1 > fYn jXnðyn* jxn; θÞ> e for all
1≤ n≤N, xn ∈X and θ∈Θ.

(B5) There is a C1 such that hnðθj  φ  ; σÞ= 0 when jθ−φj>C1σ,
for all σ.

(B6) There is a C2 such that sup1≤n≤N jθn − θn−1j<C1   σ implies��� ℓ^ðθ0:NÞ− ℓðθNÞ
���<C2   σ, for all σ and all n.

Conditions B1 and B2 hold when hnðθjφ  ; σÞ corresponds to
a reflected Gaussian random walk and fW ðtÞg is a reflected
Brownian motion (SI Text, Checking Conditions B1 and B2). More
generally, when hnðθjφ  ; σÞ is a location-scale family with mean φ
away from a boundary, then fW ðtÞg will behave like Brownian
motion in the interior of Θ. B4 follows if X is compact and
fYnjXnðyn* jxn  ; θÞ is positive and continuous as a function of θ and
xn. B5 can be guaranteed by construction. B3 and B6 are un-
demanding regularity conditions on the likelihood and extended
likelihood. A formalization of A1 and A2 can now be stated
as follows.
Theorem 1. Let Tσ be the map of Eq. 1 and suppose B2 and B4.

There is a unique probability density fσ such that for any probability
density f on Θ,

lim
m→∞

����Tm
σ f − fσ

����
1 = 0; [3]

where jjf jj1 is the L1 norm of f. Let fΘM
j ;   j= 1; . . . ; Jg be the output

of IF2, with σm = σ > 0. There is a finite constant C> 0 such that,
for any function ϕ : Θ→R and all M,

E

(�����1J
XJ

j=1

ϕ
�
ΘM

j

�
−

Z
ϕðθÞfσðθÞdθ

�����
)
≤

C  supθjϕðθÞjffiffiffi
J

p : [4]

Proof. B2 and B4 imply that Tk
σ is mixing, in the sense of ref. 26,

for all sufficiently large k. The results of ref. 26 are based on the
contractive properties of mixing maps in the Hilbert projective
metric. Although ref. 26 stated their results in the case where
T itself is mixing, the required geometric contraction in the
Hilbert metric holds as long as Tk is mixing for all
K ≤ k≤ 2K − 1 for some K ≥ 1 (ref. 27, theorem 2.5.1). Corollary
4.2 of ref. 26 implies Eq. 3, noting the equivalence of the Hil-
bert projective metric and the total variation norm shown in
their lemma 3.4. Then, corollary 5.12 of ref. 26 implies Eq. 4,
completing the proof of Theorem 1. A longer version of this
proof is given in SI Text, Additional Details for the Proof of
Theorem 1.
Results similar to Theorem 1 can be obtained using Dobrushin

contraction techniques (28). Results appropriate for noncompact
spaces can be obtained using drift conditions on a potential function
(29). Now we move on to our formalization of A3:
Theorem 2. Assume B1–B6. For λ2 < supφℓðφÞ,

limσ→0
R
fσðθÞ 1fℓðθÞ<λ2g   dθ= 0.

Proof. Let λ0 = supφℓðφÞ and λ3 = infφℓðφÞ. From B4, ∞> λ0 >
λ3 > 0. For positive constants e1, e2, η1, η2 and λ1 < λ0, define

e1 = ð1− e1Þlogðλ0 + e2Þ+ e1 logðλ2 + e2Þ;

e2 = ð1− η1Þlogðλ1 − η2Þ+ η1 logðλ3 − η2Þ:

We can pick e1, e2, η1, η2, and λ1 so that e1 < e2. Suppose that
fΘ^m

n g is initialized with the stationary distribution f = fσ identi-
fied in Theorem 1. Now, setM to be the greatest integer less than
1=σ2, and let F1 be the event that fΘm

N ;m= 1; . . . ;Mg spends at
least a fraction of time e1 in fθ : ℓðθÞ< λ2g. Formally,

F1 =

(
ϑ∈Ω :

1
M

XM
m=1

1fℓðθmNÞ<λ2g > e1

)
:

We wish to show that P
Z
^½F1� is small for σ small. Let F2 be the set

of sample paths that spend at least a fraction of time ð1− η1Þ up
to time M in fθ : ℓðθÞ> λ1g, i.e.,

F2 =

(
ϑ∈Ω :

1
M

XM
m=1

1fℓðθmNÞ>λ1g > ð1− η1Þ
)
:

Then, we calculate

P
Z
^½F1�=

E
Θ
^

h
ℓ
^

1:M1F1

i
E
Θ
^

h
ℓ
^

1:M

i

≤
E
Θ
^

h
ℓ
^

1:M1F1

i
E
Θ
^

h
ℓ
^

1:M1F2

i

≤
E
Θ
^

hQM
m=1



ℓ
�
θm
N

�
+C2σ

�
1F1

i
E
Θ
^

hQM
m=1



ℓ
�
θm
N

�
−C2σ

�
1F2

i

[5]

≤
E
Θ
^½expfMe1g1F1 �

E
Θ
^½expfMe2g1F2 �

[6]
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= expfðe1 − e2ÞMg
P
Θ
^½F1�

P
Θ
^½F2�: [7]

We used B5 and B6 to arrive at Eq. 5, then, to get to Eq. 6, we
have taken σ small enough that C2σ < e2 and C2σ < η2. From B3,
fθ : ℓðθÞ> λ1g is an open set, and B1 therefore ensures each
of the probabilities PΘ1:M ½F1� and PΘ1:M ½F2� in Eq. 7 tends to
a positive limit as σ→ 0 given by the probability under the
limiting distribution fW ðtÞg (SI Text, Lemma S1). The term
expfðe1 − e2ÞMg tends to zero as σ→ 0 since, by construction,
M→∞ and e1 < e2. Setting L= fθ : ℓðθÞ≤ λ2g, and noting that
fZ^m

N ;m= 1; 2; . . . g is constructed to have stationary marginal
density fσ , we have

Z
L

fσðθÞdθ= 1
M

XM
m=1

�
P
Z
^

�
Z
^m

N ∈L
����F1



P
Z
^½F1�

+P
Z
^

�
Z
^m

N ∈L
����Fc

1



P
Z
^

�
Fc
1

��
;

≤ e1 +P
Z
^½F1�;

which can be made arbitrarily small by picking e1 small and σ
small, completing the proof.

Demonstration of IF2 with Nonconvex Superlevel Sets
Theorems 1 and 2 do not involve any Taylor series expansions,
which are basic in the justification of IF1 (2). This might suggest
that IF2 can be effective on likelihood functions without good
low-order polynomial approximations. In practice, this can be
seen by comparing IF2 with IF1 on a simple 2D toy example
ðdimðΘÞ= dimðXÞ= dimðYÞ= 2Þ in which the superlevel sets
fθ : ℓðθÞ> λg are connected but not convex. We also compare
with particle Markov chain Monte Carlo (PMCMC) imple-
mented as the particle marginal Metropolis–Hastings algo-
rithm of ref. 17. The justification of PMCMC also does not
depend on Taylor series expansions, but PMCMC is compu-
tationally expensive compared with iterated filtering (30). Our
toy example has a constant and nonrandom latent process,
Xn = ðexpfθ1g; θ2 expfθ1gÞ for n= 1; . . . ;N. The known mea-
surement model is

fYn jXnðyjx  ; θÞ∼Normal
�
x;
�
100 0
0 1

�

;

This example was designed so that a nonlinear combination of
the parameters is well identified whereas each parameter is
marginally weakly identified. For the truth, we took θ= ð1; 1Þ.
We supposed that θ1 is suspected to fall in the interval ½−2; 2�
and θ2 is expected in ½0; 10�. We used a uniform distribution on
this rectangle to specify the prior for PMCMC and to generate
random starting points for all of the algorithms. We set N = 100
observations, and we used a Monte Carlo sample size of J = 100
particles. For IF1 and IF2, we used M = 100 filtering iterations,
with initial random walk SD 0.1 decreasing geometrically down
to 0.01. For PMCMC, we used 104 filtering iterations with ran-
dom walk SD 0.1, awarding PMCMC 100 times the computa-
tional resources offered to IF1 and IF2. Independent, normally
distributed parameter perturbations were used for IF1, IF2, and
PMCMC. The random walk SD for PMCMC is not immediately
comparable to that for IF1 and IF2, since the latter add the noise
at each observation time whereas the former adds it only be-
tween filtering iterations. All three methods could have their
parameters fine-tuned, or be modified in other ways to take

advantage of the structure of this particular problem. However,
this example demonstrates a feature that makes tuning algo-
rithms tricky: The nonlinear ridge along contours of constant
θ2 expðθ1Þ becomes increasingly steep as θ1 increases, so no sin-
gle global estimate of the second derivative of the likelihood is
appropriate. Reparameterization can linearize the ridge in this
toy example, but in practical problems with much larger param-
eter spaces, one does not always know how to find appropriate
reparameterizations, and a single reparameterization may not be
appropriate throughout the parameter space.
Fig. 1 compares the performance of the three methods, based

on 30 Monte Carlo replications. These replications investigate
the likelihood and posterior distribution for a single draw from
our toy model, since our interest is in the Monte Carlo behavior
for a given dataset. For this simulated dataset, the MLE is
θ= ð1:20; 0:81Þ, shown as a green triangle in Fig. 1 A−C. In this
toy example, the posterior distribution can also be computed
directly by numerical integration. In Fig. 1A, we see that IF1
performs poorly on this challenge. None of the 30 replications
approach the MLE. The linear combination of perturbed
parameters involved in the IF1 update formula can all too easily
knock the search off a nonlinear ridge. Fig. 1B shows that IF2
performs well on this test, with almost all of the Monte Carlo
replications clustering in the region of highest likelihood. Fig. 1C
shows the end points of the PMCMC replications, which are
nicely spread around the region of high posterior probability.
However, Fig. 1D shows that mixing of the PMCMC Markov
chains was problematic.

Application to a Cholera Model
Highly nonlinear, partially observed, stochastic dynamic systems
are ubiquitous in the study of biological processes. The physical
scale of the systems vary widely from molecular biology (31) to
population ecology and epidemiology (32), but POMP models
arise naturally at all scales. In the face of biological complexity,
it is necessary to determine which scientific aspects of a system
are critical for the investigation. Giving consideration to a range
of potential mechanisms, and their interactions, may require
working with highly parameterized models. Limitations in the

Fig. 1. Results for the simulation study of the toy example. (A) IF1 point
estimates from 30 replications (circles) and the MLE (green triangle). The
region of parameter space with likelihood within 3 log units of the maxi-
mum (white), within 10 log units (red), within 100 log units (orange), and
lower (yellow). (B) IF2 point estimates from 30 replications (circles) with the
same algorithmic settings as IF1. (C) Final parameter value of 30 PMCMC
chains (circles). (D) Kernel density estimates of the posterior for θ1 for the
first eight of these 30 PMCMC chains (solid lines), with the true posterior
distribution (dotted black line).
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available data may result in some combinations of parameters
being weakly identifiable. Despite this, other combinations of
parameters may be adequately identifiable and give rise to some
interesting statistical inferences. To demonstrate the capa-
bilities of IF2 for such analyses, we fit a model for cholera
epidemics in historic Bengal developed by King et al. (10). The
model, the data, and the implementations of IF1 and IF2 used
below are all contained in the open source R package pomp
(33). The code generating the results in this article is provided
as supplementary data (Datasets S1 and S2).
Cholera is a diarrheal disease caused by the bacterial pathogen

Vibrio cholerae. Without appropriate medical treatment, severe
infections can rapidly result in death by dehydration. Many
questions regarding cholera transmission remain unresolved:
What is the epidemiological role of free-living environmental
vibrio? How important are mild and asymptomatic infections
for the transmission dynamics? How long does protective im-
munity last following infection? The model we consider splits
up the study population of PðtÞ individuals into those who are
susceptible, SðtÞ, infected, IðtÞ, and recovered, RðtÞ. PðtÞ is as-
sumed known from census data. To allow flexibility in repre-
senting immunity, RðtÞ is subdivided into R1ðtÞ; . . . ;RkðtÞ,
where we take k= 3. Cumulative cholera mortality in each
month is tracked with a variable MðtÞ that resets to zero at the
beginning of each observation period. The state process, fXðtÞ=
ðSðtÞ; IðtÞ;R1ðtÞ; . . . ;RkðtÞ;MðtÞÞ; t≥ t0g, follows a stochastic dif-
ferential equation,

dS= fkeRk + δðS−HÞ− λðtÞSgdt+ dP− ðσSI=PÞdB;
dI = fλðtÞS− ðm+ δ+ γÞIgdt+ ðσSI=PÞdB;

dR1 = fγI − ðke+ δÞR1gdt;
..
.

dRk = fkeRk−1 − ðke+ δÞRkgdt;

driven by a Brownian motion fBðtÞg. Nonlinearity arises through
the force of infection, λðtÞ, specified as

λðtÞ= β exp

(
βtrendðt− t0Þ+

XNs

j=1

βjsjðtÞ
)
ðI=PÞ

+ω exp

(XNs

j=1

ωjsjðtÞ
)
;

where fsjðtÞ; j= 1; . . . ;Nsg is a periodic cubic B-spline basis;
fβj; j= 1; . . . ;Nsg model seasonality of transmission; fωj; j= 1; . . . ;
Nsg model seasonality of the environmental reservoir; ω and β
are scaling constants set to ω= β= 1  y−1, and we set Ns = 6. The
data, consisting of monthly counts of cholera mortality, are mod-
eled via Yn ∼NormalðMn; τ2M2

nÞ for Mn =
R tn
tn−1

m  IðsÞds.
The inference goal used to assess IF1 and IF2 is to find high-

likelihood parameter values starting from randomly drawn
starting values in a large hyperrectangle (Table S1). A single
search cannot necessarily be expected to reliably obtain the
maximum of the likelihood, due to multimodality, weak identi-
fiability, and considerable Monte Carlo error in evaluating the
likelihood. Multiple starts and restarts may be needed both for
effective optimization and for assessing the evidence to validate
effective optimization. However, optimization progress made on
an initial search provides a concrete criterion to compare
methodologies. Since IF1 and IF2 have essentially the same
computational cost, for a given Monte Carlo sample size and
number of iterations, shared fixed values of these algorithmic
parameters provide an appropriate comparison.
Fig. 2 compares results for 100 searches with J = 104 particles

and M = 100 iterations of the search. An initial Gaussian ran-
dom walk SD of 0.1 geometrically decreasing down to a final
value of 0.01 was used for all parameters except S0, I0, R1;0, R2;0,
and R3;0. For those initial value parameters, the random walk
SD decreased geometrically from 0.2 down to 0.02, but these
perturbations were applied only at time t0. Since some starting
points may lead both IF1 and IF2 to fail to approach the global
maximum, Fig. 2 plots the likelihoods of parameter vectors
output by IF1 and IF2 for each starting point. Fig. 2 shows that,
on this problem, IF2 is considerably more effective than IF1.
This maximization was considered challenging for IF1, and (10)
required multiple restarts and refinements of the optimization
procedure. Our implementation of PMCMC failed to converge
on this inference problem (SI Text, Applying PMCMC to the
Cholera Model and Fig. S2), and we are not aware of any pre-
vious successful PMCMC solution for a comparable situation.
For IF2, however, this situation appears routine. Some Monte
Carlo replication is needed because searches occasionally fail
to approach the global optimum, but replication is always ap-
propriate for Monte Carlo optimization procedures.
A fair numerical comparison of methods is difficult. For ex-

ample, it could hypothetically be the case that the algorithmic
settings used here favor IF2. However, the settings used are
those that were developed for IF1 by ref. 10 and reflect con-
siderable amounts of trial and error with that method. Likeli-
hood-based inference for general partially observed nonlinear
stochastic dynamic models was considered computationally un-
feasible before the introduction of IF1, even in situations con-
siderably simpler than the one investigated in this section (19).
We have shown that IF2 offers a substantial improvement on
IF1, by demonstrating that it functions effectively on a problem
at the limit of the capabilities of IF1.

Discussion
Theorems 1 and 2 assert convergence without giving insights into
the rate of convergence. In the particular case of a quadratic log
likelihood function and additive Gaussian parameter pertur-
bations, limM→∞TM

σ f is Gaussian, and explicit calculations are
available (SI Text, Gaussian and Near-Gaussian Analysis of

Fig. 2. Comparison of IF1 and IF2 on the cholera model. Points are the log
likelihood of the parameter vector output by IF1 and IF2, both started at
a uniform draw from a large hyperrectangle (Table S1). Likelihoods were
evaluated as the median of 10 particle filter replications (i.e., IF2 applied
with M= 1 and σ1 = 0) each with J= 2× 104 particles. Seventeen poorly per-
forming searches are off the scale of this plot (15 due to the IF1 estimate, 2
due to the IF2 estimate). Dotted lines show the maximum log likelihood
reported by ref. 10.
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Iterated Importance Sampling). If log ℓðθÞ is close to quadratic
and the parameter perturbation is close to additive Gaussian noise,
then limM→∞TM

σ f exists and is close to the limit for the approxi-
mating Gaussian system (SI Text, Gaussian and Near-Gaussian
Analysis of Iterated Importance Sampling). These Gaussian and near-
Gaussian situations also demonstrate that the compactness con-
ditions for Theorem 2 are not always necessary. In the case N = 1,
IF2 applies to the more general class of latent variable models. The
latent variable model, extended to include a parameter vector that
varies over iterations, nevertheless has the formal structure of
a POMP in the context of the IF2 algorithm. Some simplifications
arise when N = 1 (SI Text, Iterated Importance Sampling, Gaussian
and Near-Gaussian Analysis, and A Class of Exact Non-Gaussian
Limits) but the proofs of Theorems 1 and 2 do not greatly change.
A variation on iterated filtering, making white noise pertur-

bations to the parameter rather than random walk perturbations,
has favorable asymptotic properties (3). However, practical
algorithms based on this theoretical insight have not yet been pub-
lished. Our experience suggests that white noise perturbations can be
effective in a neighborhood of the MLE but fail to match the
performance of IF2 for global optimization problems in com-
plex models.

The main theoretical innovation of this paper is Theorem 2,
which does not depend on the specific sequential Monte Carlo
filter used in IF2. One could, for example, modify IF2 to use an
ensemble Kalman filter (20, 34) or an unscented Kalman filter
(35). Or, one could take advantage of variations of sequential
Monte Carlo that may improve the numerical performance (36).
However, basic sequential Monte Carlo is a general and widely
used nonlinear filtering technique that provides a simple yet
theoretically supported foundation for the IF2 algorithm. The
numerical stability of sequential Monte Carlo for the extended
POMP model constructed by IF2 is comparable, in our cholera
example, to the model with fixed parameters (SI Text, Con-
sequences of Perturbing Parameters for the Numerical Stability
of SMC and Fig. S3).
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Weak Convergence for Occupation Measures
We study the convergence of the processes fWσðtÞ; 0≤ t≤ 1g
toward fW ðtÞ; 0≤ t≤ 1g as σ→ 0 for Theorem 2. We are in-
terested in showing that the fraction of time fWσðtÞg spends in
a set Θ0 ⊂Θ over the discrete set of times fkσ2; k= 1; . . . ; 1=σ2g
converges in distribution to the fraction of time fW ðtÞg spends in
Θ0. We choose fWσðtÞg to be a right-continuous step function ap-
proximation to a diffusion to simplify the relationship between the
occupancy fraction over the discrete set of times and over the con-
tinuous interval. However, this simplification requires us to work
with convergence to fW ðtÞg in a space of processes with discon-
tinuous sample paths, leading us to work with a Skorokhod topology.
Let Dp½0; 1� be the space of Rp-valued functions on ½0; 1� which

are right continuous with left limits. Let X = fXðtÞgt∈½0;1� and
fXnðtÞgt∈½0;1�, n≥ 1, be stochastic processes with paths in Dp½0; 1�.
Let ⇒ denote weak convergence, and suppose that Xn ⇒X
as n→∞ in Dp½0; 1� equipped with the strong Skorokhod J1
topology (1).
Proposition S1 (Proposition VI.1.17 of ref. 1). If X has con-

tinuous paths, then Xn ⇒X as n→∞ in the space Dp½0; 1� equip-
ped with the uniform metric.
Suppose that f : Rp →R is Borel measurable function and

define the map Tf : Dp½0; 1�→R

Tf ðxÞ :=
Z1
0

f ðxðtÞÞdt; x∈Dp½0; 1�:

Now, let DiscðTf Þ denote the set of discontinuity points of Tf , let
Cp½0; 1� be the space of Rp-valued continuous functions on ½0; 1�,
and write Leb for Lebesgue measure.
Proposition S2. Suppose that f is bounded. We have that

Disc
�
Tf
�
∩Cp½0; 1�⊂ fx∈C½0; 1� : Lebðft∈ ½0; 1�

: xðtÞ∈Discðf ÞgÞ> 0g=: Df :

[S1]

Proof. Suppose that x∈Cp½0; 1� does not belong to the right–
hand side of Eq. S1 and let xn → x in J1. Then, according to
a standard property of the Skorokhod J1 topology (1), we also
have supt∈½0;1�jxnðtÞ− xðtÞj→ 0, as n→∞. Now, since x∉Df , we
have that for almost all t∈ ½0; 1�, the point xðtÞ is a continuity
point of f. Therefore, f ðxnðtÞÞ→ f ðxðtÞÞ;  n→∞, for almost all
t∈ ½0; 1�. Since f is bounded, the Lebesgue dominated conver-
gence theorem then yields

Tf ðxnÞ≡
Z1
0

f ðxnðtÞÞdt→
Z1
0

f ðxðtÞÞdt≡Tf ðxÞ; as  n→∞:

This completes the proof.
In the context of stochastic processes, by the Continuous

Mapping Theorem, we have convergence in distribution,

Tf ðXnÞ→d Tf ðXÞ; as n→∞;

provided X has continuous paths and PðX ∈Discðf ÞÞ= 0. In the
case when f ðxÞ= 1AðxÞ, the latter translates to

PfThe measure of the time X spends on the boundary 
of A is zerog= 1:

[S2]

If the stochastic process has continuous marginal distribution and
the set A has zero boundary, the Fubini’s theorem readily implies
Eq. S2. Indeed, the probability in Eq. S2 equals

Z
Ω

Z1
0

1∂AðXðt;ωÞÞdt  PðdωÞ=
Z1
0

PðXðtÞ∈∂AÞdt= 0;

provided that Lebð∂AÞ= 0 and if XðtÞ has a marginal density for
each t∈ ð0; 1Þ. The above arguments lead to the proof of the
following result.
Lemma S1. Suppose that Xn ⇒X in Dp½0; 1�, equipped with the

uniform convergence topology. If the process X takes values in
Cp½0; 1� and has continuous marginal distributions, then for all
bounded Borel functions f : Rp →R, that are continuous almost
everywhere, i.e., such that LebðDiscðf ÞÞ= 0, we have

Z1
0

f ðXnðtÞÞdt→d
Z1
0

f ðXðtÞÞdt; as n→∞:

Iterated Importance Sampling
When N = 1 in IF2, we obtain a general latent variable algorithm
in which each iteration involves importance sampling but not
filtering. This situation is called iterated importance sampling (2)
and we call this special case of our algorithm IIS2. Iterated im-
portance sampling has previously been used to provide a route
into proving convergence of iterated filtering (2, 3). However, in
this article, we found it more convenient to prove the full result
for iterated filtering directly. Although IIS2 may have some in-
dependent value as a practical algorithm, our only use of IIS2 in
this article is to provide a convenient environment for explicit
computations for Gaussian models in Gaussian and Near-
Gaussian Analysis and non-Gaussian models in A Class of Exact
Non-Gaussian Limits.

A general latent variable model can be specified by a joint
density fXY ðx; y; θÞ, with X taking values in X⊂RdimðXÞ, Y taking
values in Y⊂RdimðYÞ, and θ taking values in Θ⊂RdimðΘÞ. The data
consist of a single observation, yp ∈Y. The likelihood function is

Algorithm IIS2. Iterated importance sampling

input:
Simulator for fX ðx  ;θÞ Evaluator for fY jX ðyjx   ;θÞ
Data, y* Number of iterations, M
Initial parameter swarm, fΘ0

j ,j in 1 : Jg Number of particles, J

Perturbation density, hðθjφ  ; σÞ Perturbation sequence, σ1:M

output: Final parameter swarm, fΘM
j ,j  in  1 : Jg

For m in 1 : M
Φm

j ∼hðθjΘm−1
j   ;σmÞ for j in 1 : J

Xm
j ∼ fX ðx   ;Φm

j Þ for j in 1 : J
wm

j = fY jX ðy* jXm
j   ;Φm

j Þ for j in 1 : J
Draw k1:J with Pðkj = iÞ=wm

n,i=
PJ

u=1w
m
n,u

Θm
j =Φm

kj
for j in 1 : J

End For
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ℓðθÞ= fY ðyp; θÞ=
Z

fXY ðx; yp; θÞdx;

and we look for a maximum likelihood estimate (MLE), i.e.,
a value θ̂ maximizing ℓðθÞ. The parameter perturbation step of
Algorithm IIS2 is a Monte Carlo approximation to a perturbation
map Hσ where

HσgðθÞ=
Z

gðφÞhðθjφ  ; σÞdφ: [S3]

A natural choice for hð · jφ; σÞ is the multivariate normal density
with mean φ and variance σ2Σ for some covariance matrix Σ, but
in general, h could be any condition density parameterized by σ.
The resampling step of Algorithm IIS2 is a Monte Carlo approx-
imation to a Bayes map, B, given by

Bf ðθÞ= f ðθÞℓðθÞ
�Z

f ðφÞℓðφÞdφ
�−1

: [S4]

When the SD of the parameter perturbations is held fixed at
σm = σ > 0, Algorithm IIS2 is a Monte Carlo approximation to
TM
σ f ðθÞ where

Tσ f ðθÞ=BHσ f ðθÞ=
R
f ðφÞℓðθÞhðθjφ; σÞdφRR

f ðφÞℓðξÞhðξjφ; σÞdφ  dξ: [S5]

Gaussian and Near-Gaussian Analysis of Iterated Importance
Sampling
The convergence results of Theorems 1 and 2 in Convergence of
IF2 are not precise about the rate of convergence, either toward
the MLE as σ→ 0 or toward the stationary distribution as
M→∞. Explicit results are available in the Gaussian case and
are also relevant to near-Gaussian situations. The near-Gaussian
situation may arise in practice, since the parameter perturbations
can be constructed to follow a Gaussian distribution and the log
likelihood surface may be approximately quadratic due to as-
ymptotic behavior of the likelihood for large sample sizes. The
near-Gaussian situation for a POMP model does not require that
the POMP itself is near Gaussian, only that the log likelihood
surface is near quadratic. Here, we consider only the univariate
case, and only for iterated importance sampling. We offer this
simplified case as an illustrative example, rather than an alter-
native justification for the use of our algorithm. In principle,
these results can be generalized, but such results do not add
much to the general convergence guarantees already obtained.
We investigate the eigenvalues and eigenfunctions for a Gaussian

system, and then we appeal to continuity of the eigenvalues to study
systems that are close to Gaussian. Here, we consider the case of
a scalar parameter, dimðΘ= 1Þ, and an additive perturbation given by

hðθjφ; σÞ= κðθ−φÞ: [S6]

We first study the unnormalized version of Eq. S5 defined as

Sf ðθÞ= ½f ðθÞℓðθÞ� p κðθÞ=
Z

½f ðθ−φÞℓðθ−φÞ�κðφÞdφ: [S7]

This is a linear map, and we obtain the eigenvalues and eigenfunc-
tions when ℓ and h are Gaussian in Proposition S3. Iterations of
the corresponding normalized map, Tσ , converge to the normal-
ized eigenfunction corresponding to the largest eigenvalue of S,
which can be seen by postponing normalization until having car-
ried out a large number of iterations of the unnormalized map.
Suppose, without loss of generality, that the maximum of the

likelihood is at θ= 0. Let ϕðθ; σÞ be the normal density with
mean zero and variance σ2.
Proposition S3. Let S0 be the map constructed as in Eq. S7 with

the choices ℓðθÞ=ϕðθ; τÞ and κðθÞ=ϕðθ; σÞ. Let
u2 =

�
σ2 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ4 + 4σ2τ2

p �.
2= στ+ oðσÞ: [S8]

The eigenvalues of S0 are

λn = στ
ffiffiffiffiffi
2π

p 	
u2 − σ2

u2


ðn+1Þ=2
;

for n= 0; 1; 2; . . ., and the corresponding eigenfunctions have the form

en = pnðθÞϕðθ; uÞ; [S9]

where pn is a polynomial of degree n.
Proof. Let Pn be the subspace of functions of the form

qðθÞϕðθ; uÞ where q is a polynomial of degree less than or equal
to n. We show that S0 maps Pn into itself, and look at what
happens to terms of degree n. Let Hn be the Hermite polynomial
of degree n, defined by ðd=dθÞnϕðθ; 1Þ= ð−1ÞnHnðθÞϕðθ; 1Þ. Let
α= ð1=u2 + 1=τ2Þ−1=2, and set

f ðθÞ= α−2nHnðθ=αÞϕðθ; uÞ: [S10]

Then,

f ðθÞℓðθÞ= α

στ
ffiffiffiffiffi
2π

p α−2nHnðθ=αÞϕðθ; αÞ= α

στ
ffiffiffiffiffi
2π

p ð−1Þn dn

dθn
ϕðθ; αÞ:

[S11]

Since ½ðd=dθÞnf ℓ� p κ= ðd=dθÞn½ðf ℓÞ p κ�, we get

ðf ℓÞ p κ= α

στ
ffiffiffiffiffi
2π

p ð−1Þn d
n

dθn
ϕðθ; uÞ= α

στ
ffiffiffiffiffi
2π

p u−2nHnðθ=uÞϕðθ; uÞ:
[S12]

Writing HnðθÞ= h0 + h1θ+ . . . + hnθn, we see that the coefficient
of the term in θn in Eq. S10 is α−nhn, whereas in Eq. S12, it is

α
στ
ffiffiffiffi
2π

p u−n. We have shown that S0 operating on Pn multiplies the
coefficient of degree n by a factor of λn. Letting Ln be the matrix
representing S0 on Pn with the basis b0; . . . ; bm given by
bmðθÞ= θmϕðθ; uÞ, we see that Ln is lower triangular with diago-
nal entries λ0; . . . ; λn. Therefore, the eigenvalues are λ0; . . . ; λn,
and the eigenfunction corresponding to λm is in Pm.
The case where log ℓðθÞ is close to quadratic is relevant due to

asymptotic log quadratic properties of the likelihood function.
Choosing κðθÞ to be Gaussian, as in Proposition S3, we have the
following approximation result.
Proposition S4. Let Se be a map as in Eq. S7, with ℓ satisfying

supθjℓðθÞ−ϕðθ; τÞj< e and κðθÞ=ϕðθ; σÞ. For « small, the largest
eigenvalue of Se is close to λ0 and the corresponding eigenfunction
is close to ϕðθ; uÞ.
Proof. Write ℓðθÞ=ϕðθ; τÞ+ ηðθÞ, with supθjηðθÞj< e. Then,

jjSe f − S0f jj= jjðfηÞ * κjj≤ jjfηjj≤ ejjf jj: [S13]

Here, k · k is the L2 norm of a function or the corresponding
operator norm (largest absolute eigenvalue). Convolution with
κ is a contraction in L2, which is apparent by taking Fourier
transforms and making use of Parseval’s relationship, since all
frequencies are shrunk by multiplying with the Fourier transform
of κ. From Eq. S13, we have jjS0 − Sejj< e. This implies that Se
has a largest eigenvalue μ0 with jμ0 − λ0j< e, based on the rep-
resentation that
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jμ0j= jjSjj= sup
f

jjSef jj
jjf jj : [S14]

Writing the corresponding unit eigenfunction as w0, we have

w0 = ð1=μ0ÞSew0 = ð1=μ0Þ½S0w0 + η�; [S15]

where jjηðθÞjj< e. Writing w0 =
P∞

i=1αiei, in terms of feig from
Eq. S9, Eq. S15 gives

X∞
i=1

αiei =
X∞
i=1

αi
λi
μ0

ei + η=
X∞
i=1

αi
λi
λ0

ei + ~η; [S16]

where jj~ηjj< e ð1+ ½λ0ðλ0 − eÞ�−1Þ. Comparing terms in ei, we see
that all terms α1; α2; . . . must be of order «.

A Class of Exact Non-Gaussian Limits for Iterated
Importance Sampling
We look for exact solutions to the equation Tf = f where
T =BH, as specified in Eq. S5 with hðθjφ ; σÞ= κðθ−φÞ. This
situation corresponds to iterated importance sampling with
additive parameter perturbations that have no dependence
on σ, as in Eq. S6. Now, for gðxÞ being a probability density on
Θ, define

ℓgðxÞ= c
gðxÞ

κ p gðxÞ; [S17]

where c is a nonnegative constant. For likelihood functions of
the form of Eq. S17, supposing that ℓg is integrable, we obtain an
eigenfunction eðxÞ= κ p gðxÞ for the unnormalized map S defined
in Eq. S7 via the following calculation:

SeðxÞ= c
Z

gðx− uÞ
ðg p κÞðx− uÞ ðg p κÞðx− uÞκðuÞdu

= c
Z

gðx− uÞκðuÞdu
= c½g p κðxÞ�= c  eðxÞ:

Under conditions such as Theorem 1, it follows that κ p g is the
unique eigenfunction for T, up to a scale factor, and that
limM→∞TMf = e. We do not anticipate practical applications for
the conjugacy relationship we have established between the pair
ðℓg; κÞ since we see no reason why the likelihood should have the
form of Eq. S17. However, this situation does serve to identify
a range of possible limiting behaviors for TM .

Applying PMCMC to the Cholera Model
We carried out PMCMC for the cholera model, with the prior
being uniform on the hyperrectangle specified by θlow and θhigh in
Table S1. Thus, the IF1 and IF2 searches were conducted
starting with random draws from this prior. Since PMCMC is
known to be computationally demanding, we investigated a sim-
plified challenge: investigating the posterior distribution starting
at the MLE. This would be appropriate, for example, if one
aimed to obtain Bayesian inferences using PMCMC but giving it
a helping hand by first finding a good starting value obtained by
a maximization procedure. We used the PMMH implementation
of PMCMC in pomp (4) with parameter proposals following
a Gaussian random walk with SDs given by ðθhigh − θlowÞ=100.
We started 100 independent chains at the estimated MLE in
Table S1. Each PMCMC chain, with J = 1; 500 particles at each
ofM = 2× 104 likelihood evaluations, took around 30 h to run on

a single core of the University of Michigan Flux cluster. Writing
Vm;d for the sample variance of variable d∈ f1; . . . ; dimðΘÞg
among the 100 chains at time m∈ f1 . . . ;Mg, and τd for the
Gaussian random walk SD for parameter d, we tracked the
quantity

Vm =
XdimðΘÞ

d=1

Vm;d

τ2d
: [S18]

Supposing the posterior variance is finite, a necessary require-
ment for convergence to stationarity as m increased is for Vm
to approach its asymptotic limit. Since all of the chains start at
the same place, one expects Vm to increase toward this limit. The
number of iterations required for Vm to stabilize therefore pro-
vides a lower bound on the time taken for convergence of the
chain. This test assesses the capability of the chain to explore the
region of parameter space with high posterior probability den-
sity, rather than the capability to search for this region from
a remote starting point. We also tested PMCMC on a harder
challenge, investigating convergence of the MCMC chain to its
stationary distribution from overdispersed starting values. We
repeated the computation described above, with 100 chains ini-
tialized at draws from the prior distribution. The results are
shown in Fig. S1. From Fig. S1A, we see that the stationary
distribution has not yet been approached for the chains starting
at the MLE, since the variance of independent chains continues
to increase up to M = 2× 104. As a harder test, the variance for
the initially overdispersed independent chains should approach
that for the initially underdispersed chains, but we see in Fig.
S1B that much more computation would be required to achieve
this with the algorithmic settings used.
The PMCMC chains used here, for the cholera data with

N = 6 × 102 data points, involved JMN = ð1:5× 103Þ× ð2× 104Þ×
ð6× 102Þ= 1:8× 1010 calls to the dynamic process simulator (the
dominating computational expense), and yet failed to converge.
By contrast, IF2 with JMN = ð104Þ× 102 × ð6× 102Þ= 6× 108
calls to the dynamic process simulator was shown to be an ef-
fective tool for global investigation of the likelihood surface.
As with all numerical comparisons, it is hard to assess whether
poor performance is a consequence of poor algorithmic choices.
Conceptually, a major difference between iterated filtering and
PMCMC is that the filtering particles in IF2 investigate the
parameter space and latent dynamic variable space simulta-
neously, whereas, in PMCMC, each filtering iteration is used
only to provide a single noisy likelihood evaluation. It may not
be surprising that algorithms such as PMCMC struggle in sit-
uations where filtering is a substantial computational expense
and the likelihood surface is sufficiently complex that many
thousands of Monte Carlo steps are required to explore it. In-
deed, IF1 and IF2 remain the only algorithms that have cur-
rently been demonstrated computationally capable of efficient
likelihood-based inference for situations of comparable diffi-
culty to our example.

Applying Liu and West’s Method to the Toy Example
Bayesian parameter estimation for POMP models using se-
quential Monte Carlo with perturbed parameters was proposed
by ref. 5. Similar approaches using alternative nonlinear filters
have also been widely used (6, 7). Liu and West (8) proposed a
development on the approach of ref. 5 that combines parameter
perturbations with a contraction that is designed to counterbalance
the variation added by the perturbations, thereby approximating the
posterior distribution of the parameters for the fixed parameter
model of interest. Liu and West (8) also included an auxiliary
particle filter procedure in their algorithm (9). The auxiliary particle
filter is a version of sequential Monte Carlo that looks ahead to
a future observation when deciding which particles to propagate.
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Generally, auxiliary particle filter algorithms do not have the plug-
and-play property (10, 11) since they involve constructing weights
that require evaluation of the transition density for the latent pro-
cess. In addition, the auxiliary particle filter does not neces-
sarily have superior performance over a basic sequential Monte
Carlo filter (12). To compare with IF2 and PMCMC on our toy
example, we therefore use a version of the Liu and West al-
gorithm, which we call LW, that omits the auxiliary particle
filter procedure. LW carries out the key innovation of param-
eter perturbation and contraction (Steps 3 and 4 in section 10.4
of ref. 8) while omitting the auxiliary particle filter (Steps 1 and
2, and the denominator in Step 5, in section 10.4 of ref. 8). LW
was implemented via the bsmc2 function of the pomp package
(4). If an effective auxiliary particle filter were available for
a specific computation, it could also be used to enhance other
sequential Monte Carlo based inference procedures such as
IF1, IF2, and PMCMC.
For the numerical results reported in Fig. S2, we used J = 104

particles for LW. This awards the same computational resources
to LW that we gave IF1 and IF2 for the results in Fig. 1. The
magnitude of the perturbations in LW is controlled by a discount
factor (δ in the notation of ref. 8), and we considered three
values, δ∈ f0:99; 0:999; 0:9999g. Liu and West (8) suggested that
δ should take values in the range δ∈ ½0:95; 0:99�, with smaller
values of δ reducing Monte Carlo variability while increasing bias
in the approximation to the target posterior distribution. For our
toy example, we see from Fig. S2A that the choice δ= 0:99 results
in a stable Monte Carlo computation (since all eight realizations
are close). However, Fig. S2A also reveals a large amount of bias.
Increasing δ to 0.999, Fig. S2B shows some increase in the Monte
Carlo variability and some decrease in the bias. Further in-
creasing δ to 0.9999, Fig. S2C shows the bias becomes small
while the Monte Carlo variability continues to increase. Values
of δ very close to 1 are numerically tractable for this toy model,
but not in most applications. As δ approaches 1, the ensuing
numerical instability exemplifies the principal reason why
Bayesian and likelihood-based inference for POMP models is
challenging despite the development of modern nonlinear fil-
tering techniques.
The justification provided by ref. 8 for their algorithm is based

on a Gaussian approximation to the posterior distribution.
Specifically, ref. 8 argued that the posterior distribution should
be approximately unchanged by carrying out a linear contraction
toward its mean followed by adding an appropriate pertur-
bation. Therefore, it may be unsurprising that LW performs
poorly in the presence of nonlinear ridges in the likelihood
surface. Other authors have reported poor numerical perfor-
mance for the algorithm of ref. 8, e.g., figure 2 of ref. 13 and
figure 2 of ref. 14. Our results are consistent with these findings,
and we conclude that the approach of ref. 8 should be used with
considerable caution when the posterior distribution is not close
to Gaussian.

Consequences of Perturbing Parameters for the Numerical
Stability of SMC
The IF2 algorithm applies sequential Monte Carlo (SMC) to an
extended POMP model in which the time-varying parameters are
treated as dynamic state variables. This procedure increases the
dimension of the state space by the number of time-varying
parameters. Empirically, SMC has been found effective in many
low-dimensional systems, but its numerical performance can
degrade in larger systems. A natural concern, therefore, is the
extent to which the extension of the state variable in IF2 increases
the numerical challenge of carrying out SMC effectively. Two
rival heuristics suggest different answers. One intuitive (but not
universally correct) argument is that adding variability to the
system stabilizes numerically unstable filtering problems, since it
gives each particle at least a slim chance of following a trajectory

compatible with the data. An opposing intuition, that SMC breaks
down rapidly as the dimension increases, has theoretical support
(15). However, the theoretical arguments of ref. 15 may be
driven more by increasing the observation dimension than in-
creasing the state dimension, so their relevance in the present
situation is not entirely clear.
We investigated numerical stability of SMC, in the context of

our cholera example, by measuring the effective sample size
(ESS) (16). We investigated the ESS for two parameter vectors,
the MLE and an alternative value for which SMC is more nu-
merically challenging. We carried out particle filtering with and
without random walk perturbations to the parameters, obtaining
the results presented in Fig. S3. We found that the random walk
perturbations led to a 5% decrease in the average ESS at the
MLE, but a 13% increase in the average ESS at the alternative
parameter vector. This example demonstrates that the random
walk perturbations can have both a cost and a benefit for nu-
merical stability, with the benefit outweighing the cost as the
filtering problem becomes more challenging.

Checking Conditions B1 and B2
We check B1 and B2 when Θ is a rectangular region in RdimðΘÞ,
with hnðθjϕ  ; σÞ describing a Gaussian random walk having as
a limit a reflected Brownian motion on Θ. A more general study
of the limit of reflected random walks to reflected Brownian
motions (in particular, including limits where the random walk
step distribution satisfies B5) was presented by Bossy et al. (17).
The specific examples of the IF2 algorithm given in our paper all
use Gaussian random walk perturbations for the parameters.
The examples did not use boundary conditions to constrain the
parameter to a bounded set. While such conditions could be
used to ensure practical stability of the algorithm, we view the
conditions primarily as a theoretical device to assist the mathe-
matical analysis of the algorithm.
Suppose that Θ= ½a1; b1�× ½a2; b2�× . . . × ½adimðΘÞ; bdimðΘÞ�. For

each coordinate direction d= 1; . . . ; dimðΘÞ, let Rd : R→ ½ad; bd�
be the reflection map defined recursively by

RdðxÞ=
8<
:

x if x∈ ½ad; bd�
Rdð2bd − xÞ if x> bd
Rdð2ad − xÞ if x< ad

:

Let hn;dðθdjϕd   ; σÞ be the density of Rdðϕd + σZÞ where Z is a stan-
dard Normal random variable. Let hnðθjϕ  ; σÞ be the joint density
corresponding to the product of hn;1; . . . ; hn;dimðΘÞ. This choice of
hn corresponds to a perturbation process for the parameter vec-
tor in the IF2 algorithm following a Gaussian random walk on Θ
with reflective boundary conditions, independently in each co-
ordinate direction. By construction, the finite dimensional dis-
tributions of WσðtÞ at the set of times

�
kσ2 : k= 0; 1; 2; . . . and kσ2 ≤ 1

�
exactly match the corresponding finite dimensional distributions
of a reflected Brownian motion fW ðtÞg taking values in Θ. This
fW ðtÞg gives a construction of the limiting process whose exis-
tence is assumed in B1. For A⊂Θ, we see from this construction
of fW ðtÞg that the probability fW ðtÞg is in A for all e≤ t≤ 1� is
greater than the corresponding probability for an unreflected
Brownian motion, fWðuÞðtÞg with the same intensity parameter.
It is routine to check that fWðuÞðtÞg has a positive probability of
remaining in any open set A for all e≤ t≤ 1 uniformly over all
values of WðuÞð0Þ∈Θ. Thus, we have completed the check of
condition B1.
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To check B2, the positivity of the marginal density of W ðtÞ on
Θ, uniformly over the value of W ð0Þ, again follows since this
density is larger than the known density for WðuÞðtÞ.
Additional Details for the Proof of Theorem 1
In Convergence of IF2, a condensed proof of Theorem 1 is pro-
vided to describe the key steps in the argument. Here, we restate
Theorem 1 and provide a more detailed proof. The reader is
referred back to the main text for the notation and statement of
conditions B2 and B4. Let L1Θ denote the space of integrable
real-valued functions on Θ with norm jjf jj1 =

R jf ðθÞjdθ. For
nonnegative measures μ and ν on Θ, let jjμ−νjjtv denote the total
variation distance and let Hðμ; νÞ denote the Hilbert metric
distance (18, 19). The measures μ and ν are said to be compa-
rable if they are both nonzero and there exist constants 0< a≤ b
such that a  νðAÞ≤ μðAÞ≤ b  νðAÞ for all measurable subsets A⊂Θ.
For comparable measures, Hðμ; νÞ is defined by

Hðμ; νÞ= log
supA   μðAÞ=νðAÞ
infA   μðAÞ=νðAÞ ; [S19]

with the supremum and infimum taken over measurable subsets
A⊂Θ having νðAÞ> 0. For noncomparable measures, the Hilbert
metric is defined by Hð0; 0Þ= 0, and otherwise Hðμ; νÞ=∞. The
Hilbert metric is invariant to multiplication by a positive scalar,
Hðaμ; νÞ=Hðμ; νÞ. This projective property makes the Hilbert
metric convenient to investigate the Bayes map: In the context
of the following proof, the projective property lets us analyze the
linear map Sσ to study the nonlinear map Tσ .
Theorem 1. Let Tσ be the map defined by Eq. 1 in the main text,

and suppose B2 and B4. There exists a unique probability density fσ
such that for any probability density f on Θ,

lim
m→∞

jjTm
σ f − fσ jj1 = 0; [S20]

where jjf jj1 is the L1 norm of f. Let fΘM
j ;  j= 1; . . . ; Jg be the

output of IF2, with σm = σ > 0. There exists a finite constant
C such that

lim sup
M→∞

E

"




1J
XJ
j=1

ϕ
�
ΘM

j

�
−
Z

ϕðθÞfσðθÞdθ






#
≤
CsupθjϕðθÞjffiffiffi

J
p :

[S21]

Proof. For θ0:N ∈ΘN+1, we single out the last component of θ0:N
by writing ℓ

^ðθ0:NÞ= ℓ
^ðθ0:N−1; θNÞ and hðθ0:N jϕÞ= hðθ0:N−1; θN jϕÞ.

Then, for ϕ and θ in Θ, we define

sσðϕ; θÞ=
Z

hðθ0:N−1; θjϕ; σÞ ℓ
^ðθ0:N−1; θÞdθ0:N−1: [S22]

The function sσ in Eq. S22 defines a linear operator Sσf ðθÞ=R
sσðϕ; θÞf ðϕÞdϕ that maps L1ðΘÞ into itself. Notice that Tσf ðθÞ=

Sσ f ðθÞ=jjSσf jj1. More generally, if μ is a probability measure on
Θ, Sσμ denotes the function SσμðθÞ=

R
sσðϕ; θÞμðdϕÞ. Notice

also that Smσ f , the m-th iterate of Sσ , can be written as Smσ f ðθÞ=R
sðmÞ
σ ðϕ; θÞf ðϕÞdϕ, where sð1Þσ ðϕ; θÞ= sσðϕ; θÞ, and for m≥ 2,

sðmÞ
σ ðϕ; θÞ= R sσðϕ; uÞsðm−1Þ

σ ðu; θÞdu. Using the definition of ℓ
^

and B4,

sσðϕ; θÞ=
Z

hðθ0:N−1; θjϕ; σÞ
Z

fX ðx0:N jθ0:N−1; θÞfY jX
�
y*1:N jx0:N

�
dx0:N dθ0:N−1 ≥ eN

Z
hðθ0:N−1; θjϕ; σÞdθ0:N−1;

[S23]

and, similarly,

sσðϕ; θÞ≤ e−N
Z

hðθ0:N−1; θjϕ; σÞdθ0:N−1: [S24]

By iterating the Inequalities S23 and S24, assumption B2 implies
that there exists m0 ≥ 1 such that for any m≥m0, there exist
0< δm <∞, a probability measure λm on Θ such that for all mea-
surable subsets A⊂Θ and all θ∈Θ,

δmλmðAÞ≤
Z
A

sðmÞðθ;ϕÞdϕ≤ δ−1m λmðAÞ: [S25]

In other words, Sm0
σ is mixing in the sense of ref. 19. In the

terminology of ref. 18, this means that for each m≥m0, Sm has
finite projective diameter (see lemma 2.6.2 of ref. 18). There-
fore, by theorem 2.5.1 of ref. 18, we conclude that Sσ has a unique
nonnegative eigenfunction fσ with jjfσ jj1 = 1, and for any density
f on Θ, as q→∞,












�
Sm0
σ

�qf
jj�Sm0

σ

�qf jj1 − fσ













1

= jjTm0q
σ f − fσ jj1 → 0:

This implies the Statement S20, by writing for any m≥ 1,
m= qm0 + r, for 0≤ r≤m0 − 1, and Tm

σ f = ½Tqm0
σ �Tr

σ f .
Let the initial particle swarm fΘ0

j ;   1≤ j≤ Jg consist of in-
dependent draws from the density f. To prove Eq. S21, we
decompose M = qm0 + r, for some r∈ f0; . . . ;m0 − 1g, and we
introduce the empirical measures μð0Þ = J−1

PJ
j=1δΘðrÞ

j
, and for

k= 1; . . . ; q, μðkÞ = J−1
PJ

j=1δΘðr+m0kÞ
j

, so that μðqÞ = J−1
PJ

j=1δΘðMÞ
j
.

We then write, for any bounded measurable function ϕ,

μðqÞðϕÞ− �TM
σ f
�ðϕÞ= μðqÞðϕÞ− �Tm0q

σ μð0Þ
�ðϕÞ

+
�
Tm0q
σ μð0Þ

�ðϕÞ− �Tm0q
σ Tr

σ f
�ðϕÞ

=
Xq
i=1

nh
Tm0ði−1Þ
σ μðq−i+1Þ

i
ðϕÞ−

h
Tm0 i
σ μðq−iÞ

i
ðϕÞ
o

+
�
Tm0q
σ μð0Þ

�ðϕÞ− �Tm0q
σ Tr

σ f
�ðϕÞ:

Using theorem 2 of ref. 20, we can find a finite constant C3 such
that for all k≥ 1, and writing jjϕjj∞ = supθjϕðθÞj,

ρ= sup
ϕ:jjϕjj∞=1

E

h


μðkÞðϕÞ− hTm0
σ μðk−1Þ

i
ðϕÞ



i≤ C3ffiffiffi

J
p ; [S26]

with B4 implying that the constant C3 constructed by ref. 20 does
not depend on μðk−1Þ. Since Sm0

σ is mixing and Eq. S25 holds,
using lemma 3.4, lemma 3.5, lemma 3.8, and equation 7 of ref.
19, we have

E
�

�Tm0q

σ μð0Þ
�ðϕÞ− �Tm0q

σ Tr
σf
�ðϕÞj�

≤ jjϕjj∞E
�jjTm0q

σ μð0Þ −Tm0q
σ Tr

σf jjtv
�

≤
2jjϕjj∞
log 3

E

h
H
�
Sm0q
σ μð0Þ; Sm0q

σ Tr
σf
�i

≤
2jjϕjj∞
log 3

 
1− δ2m0

1+ δ2m0

!q−2
1
δ2m0

E

h
jjTm0

σ μð0Þ −Tm0
σ Tr

σ f jjtv
i

≤
4jjϕjj∞
log 3

 
1− δ2m0

1+ δ2m0

!q−2
1
δ2m0

ρ

δ2m0

:
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For i= 3; . . . ; q, a similar calculation gives

E

h


Tm0ði−1Þ
σ μðq−i+1ÞðϕÞ−Tm0i

σ μðq−iÞðϕÞ



i=E

h


Tm0ði−1Þ
σ μðq−i+1ÞðϕÞ

−Tm0ði−1Þ
σ Tm0

σ μðq−iÞðϕÞ



i≤ 4jjϕjj∞

log 3

 
1− δ2m0

1+ δ2m0

!i−3
1
δ2m0

ρ

δ2m0

:

The case i= 1 boils down to Eq. S26, where the case i= 2 gives,
by similar calculations:

E

h

Tm0
σ μðq−1ÞðϕÞ−T2m0

σ μðq−2ÞðϕÞj
i
≤ 2jjϕjj∞

ρ

δ2m0

:

Hence, using Eq. S26,

E

h


μðqÞðϕÞ− �TM
σ f
�ðϕÞ


i

≤
C3jjϕjj∞ffiffiffi

J
p

0
@1+

2
δ2m0

+
4

log 3

 
1
δ2m0

!2Xq−2
j=0

 
1− δ2m0

1+ δ2m0

!j
1
A:

We conclude that there exists a finite constant C4 such that

E

"




1J
XJ
j=1

ϕ
�
ΘM

j

�
−
Z

ϕðθÞ�TM
σ f
�ðθÞdθ







#
≤

C4jjϕjj∞ffiffiffi
J

p : [S27]

Eq. S21 follows by combining Eq. S27 with Eq. S20.
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Fig. S1. The Liu and West algorithm (8) applied to the toy example with varying values of the discount factor: (A) δ= 0:99; (B) δ= 0:999; (C) δ= 0:9999. Solid
lines show eight independent estimates of the marginal posterior density of θ1. The black dotted line shows the true posterior density.
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Fig. S2. PMCMC convergence assessment, using the diagnostic quantity in Eq. S18. (A) Underdispersed chains, all started at the MLE. (B) Overdispersed chains,
started with draws from the prior (solid line), and underdispersed chains (dotted line). The average acceptance probability was 0.04238, with Monte Carlo SE
0.00072, calculated from iterations 5,000 through 20,000 for the 100 underdispersed PMCMC chains. For the overdispersed chains, the average acceptance
probability was 0.04243 with SE 0.00100.
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Fig. S3. Effective sample size (ESS) for SMC with fixed parameters and with perturbed parameters. We ran SMC for the cholera model with the parameter
vector set at the MLE, θ̂, and at an alternative parameter vector ~θ for which the first 18 parameters in Table S1 were multiplied by a factor of 0.8. We defined
the ESS at each time point by the reciprocal of the sum of squares of the normalized weights of the particles. The mean ESS was calculated as the average of
these ESS values over the 600 time points. Repeating this computation 100 times, using J= 104 particles, gave 100 mean ESS values shown in the “fixed”
columns of the box-and-whisker plot. Repeating the computation with additional parameter perturbations having random walk SD of 0.01 gave the 100 mean
ESS values shown in the “perturbed” column. For both parameter vectors, the perturbations greatly increase the spread of the mean ESS. At θ̂, the pertur-
bations decreased the mean ESS value by 5% on average, whereas at ~θ the perturbations increased the mean ESS value by 13% on average. The MLE may be
expected to be a favorable parameter value for stable filtering, and our interpretation is that the parameter perturbations have some chance of moving the
SMC particles away from this favorable region. When started away from the MLE, the numerical stability of the IF2 algorithm benefits from the converse effect
that the parameter perturbations will move the SMC particles preferentially toward this favorable region. For parameter values even further from the MLE
than ~θ, SMC may fail numerically for a fixed parameter value yet be feasible with perturbed parameters.
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Table S1. Parameters for the cholera model

θ̂ θlow θhigh

γ 20.80 10.00 40.00
« 19.10 0.20 30.00
m 0.06 0.03 0.60
βtrend × 102 −0.50 −1.00 0.00
β1 0.75 −4.00 4.00
β2 6.38 0.00 8.00
β3 −3.44 −4.00 4.00
β4 4.23 0.00 8.00
β5 3.33 0.00 8.00
β6 4.55 0.00 8.00
ω1 −1.69 −10.00 0.00
ω2 −2.54 −10.00 0.00
ω3 −2.84 −10.00 0.00
ω4 −4.69 −10.00 0.00
ω5 −8.48 −10.00 0.00
ω6 −4.39 −10.00 0.00
σ 3.13 1.00 5.00
τ 0.23 0.10 0.50
S0 0.62 0.00 1.00
I0 0.38 0.00 1.00
R1,0 0.00 0.00 1.00
R2,0 0.00 0.00 1.00
R3,0 0.00 0.00 1.00

θ̂ is the MLE reported by ref. 1. Three parameters were fixed (δ= 0:02,
Ns = 6, and k= 3) following ref. 1. Units are per year for γ, «, m, βtrend, and δ;
all other parameters are dimensionless. The θlow and θhigh are the lower and
upper bounds for a hyperrectangle used to generate starting points for the
search. Nonnegative parameters (γ, «, m, σ, τ) were logarithmically trans-
formed for optimization. Unit scale parameters (S0, I0, R1,0, R2,0, R3,0) were
optimized on a logistic scale. These parameters were rescaled using the
known population size to give the initial state variables, e.g., Sðt0Þ=
S0fS0 + I0 +R1,0 +R2,0 +R3,0g−1Pðt0Þ.
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