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Abstract. Certain biological experiments investigating cell motion result in time lapse video
microscopy data which may be modeled using stochastic differential equations. These mod-
els suggest statistics for quantifying experimental results and testing relevant hypotheses, and
carry implications for the qualitative behavior of cells and for underlying biophysical mech-
anisms. Directional cell motion in response to a stimulus, termed taxis, has previously been
modeled at a phenomenological level using the Keller-Segel diffusion equation. The Keller-
Segel model cannot distinguish certain modes of taxis, and this motivates the introduction
of a richer class of models which is nevertheless still amenable to statistical analysis. A state
space model formulation is used to link models proposed for cell velocity to observed data.
Sequential Monte Carlo methods enable parameter estimation via maximum likelihood for
a range of applicable models. One particular experimental situation, involving the effect
of an electric field on cell behavior, is considered in detail. In this case, an Ornstein-
Uhlenbeck model for cell velocity is found to compare favorably with a nonlinear diffu-
sion model.

1. Introduction

Active migration of blood and tissue cells is essential to a number of physiologi-
cal processes such as inflammation, wound healing, embryogenesis and tumor cell
metastasis [6]. It also plays an important role in the functioning of many bioar-
tificial tissues and organs [37], such as skin equivalents [44] and cartilage repair
[41]. Modern techniques in microscopy, genetics and pharmacology have helped
to make some progress in unraveling the complex biophysical processes involved
in cell motion [39]. Although different cell types show diverse methods of loco-
motion, there are general principles that are widely applicable for cells moving
along a substrate. First a cell extends a protrusion by actin filament polymerization
[40], which then attaches to the substrate using integrin adhesion receptors [29]. A
contractile force is next generated which moves the cell body. Finally the cell must
detach from the substrate at its trailing end.
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Various mathematical models incorporating the above principles of cell motion
have been proposed. The most ambitious of them attempt to represent all the phys-
ical and chemical processes involved in the motion of an entire cell [53,13,11].
Others concentrate on a specific process such as extension of a protrusion [40]
or receptor dynamics [38]. The primary purpose of these biophysical models is
to demonstrate that the proposed mechanisms can in fact produce the forces and
behaviors observed experimentally.

Another approach to modeling cell motion is phenomenological in nature. The
so-called correlated random walks of Alt [1], Dunn and Brown [19] and Shenderov
and Sheetz [49] have been proposed to describe observations of isolated cells loco-
moting on a substrate. For applications, the behavior of cell populations may be of
more direct interest, and here diffusion approximations to population behavior are
widely used following Keller and Segel [33]. The theoretical relationships between
single cell models and population models have been studied by Alt [1], Dickinson
and Tranquillo [14], Ford et al. [23,24]. An empirical comparison between single
cell and cell population models is given by Farrell et al. [22]. Phenomenological
models are used for quantifying experimentally observed cell behavior, and do
not require justification in terms of a proposed mechanism. Nevertheless the line
dividing biophysical from phenomenological models is in fact only a difference in
complexity, and can become blurred as even the simpler phenomenological models
can have implications concerning underlying biophysical mechanisms [19].

The questions of scientific and engineering interest about cell motion can be
broadly summarized into the following: What biophysical processes are involved
in cell motion? How can the speed and direction of the motion be modeled? One
approach toward answering these questions is to collect temporal sequences of
images of moving cells. Various experimental protocols for collecting such data
were discussed in [2] and [3]. Cells may be observed moving separately on a
microscope slide, or in a three-dimensional collagen gel. The cells under investi-
gation may be part of a connected tissue, with a stain used to identify and track
groups of cells.

Models of cell motion have been categorized by the length and time scales
under primary consideration [14]. On the scale of locomotion the basic actions of
cell motion are apparent: this is the scale on which a cell may extend individual
protrusions (broad lamellae, thinner lamellipodia or hairlike filopodia) that can be
used to pull itself along. On a longer time and length scale, termed translocation,
one observes the displacement of the cell due to one or several motion cycles.
As the resolution of detail about the motion decreases, gross tendencies such as
directional preferences can become more apparent. On the scale of migration, the
cumulative effect of many motion cycles is observed. Although on the migration
scale one loses the ability to observe directly the mechanisms of cell motion, it is the
behavior of cells on this scale which is of primary interest in applications such as
development, cancer metastasis, and tissue engineering. Furthermore, some assays
such as the Boyden diffusion chamber [10] entail observations of populations of
cells for which only the behavior on the migration scale can be directly observed.
Dickinson and Tranquillo [14] develop mathematical methods to relate models on
different scales, using the method of adiabatic elimination of fast variables [25].



Stochastic models for cell motion and taxis 25

The Keller–Segel model of chemotaxis [33,10] gives a widely accepted
approach for modeling cells on the migration scale, using Fokker–Planck equa-
tions. The Fokker-Planck equation models only the density of the cells, however
this density also arises from modeling the stochastic paths of individual cells as the
solution to a stochastic differential equation (SDE). Fokker-Planck equations apply
only to Markov processes [25], whereas SDEs can describe processes with memory.
The use of SDEs and techniques of stochastic calculus for biological modeling was
pioneered by by Kendall [34] and Brillinger [7,9]. A contribution of this paper is to
show how SDEs can provide a systematic approach for qualitative and quantitative
descriptions of cell motion on the scales of translocation and migration.

When the distribution of the velocity process has rotational symmetry about the
origin, and does not depend on position, the model is called isotropic. Such models,
suitable when the cell experiences no directional stimuli, are discussed in Section 2.
When the velocity process has directional asymmetry or depends on position then
the cell is said to perform taxis. The cell must then be picking up some locational or
directional cue from its environment. Models for taxis are considered in Section 3.
Section 4 addresses the issue of whether a cell can move up a gradient of a chemical
attractant while only being aware of its concentration. Section 5 illustrates some
uses of the stochastic models via an investigation of cell motion in an electric field.

2. Isotropic cell translocation

Two characteristics used to describe isotropic cell motion are speed and persistence.
The story is that in the short term cells are observed to move with slowly varying
direction and speed. After a while they appear to forget their initial orientation.
This time scale is termed the persistence of the cell. A standard model for iso-
tropic translocation is the Ornstein-Uhlenbeck (O-U) process, where the velocity
vt = (vx(t), vy(t)) is supposed to follow the stochastic infinitesimal equation

dvt = −avt dt + b dWt (M1)

for positive constants a and b and a two-dimensional Brownian motion Wt . An
introduction to SDEs can be found in [43] and an elegant treatment of one dimen-
sional diffusions is given in [31]. The coefficient −avt is called the infinitesimal
drift and b2 the infinitesimal variance. Heuristically, a gives the rate at which the
velocity regresses to zero and b gives the magnitude of the random innovations
which tend to push the velocity away from zero. The root mean square speed can
be calculated as

√
b2/a, and a measure of persistence is 1/a. The O-U process was

introduced for cell motion in [19], and a thorough presentation is given in [51].
Similar concepts of speed and persistence were developed in earlier probabilistic
models [1,18].

One feature sometimes observed for cells is that their direction of motion
changes most rapidly when their speed is small. This behavior is a property of
(M1), as is most clearly seen by transforming to polar coordinates (rt , θt ) for the
velocity by applying Itô’s lemma ([43], Theorem 4.2.1). This leads to the infinites-
imal equations
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drt =
(

−art + b2

2rt

)
dt + b dWr

t

dθt =
(

b

rt

)
dWθ

t

for two independent one-dimensional Brownian motions Wr
t and Wθ

t .
An extension of the O-U model was introduced by Shenderov and Sheetz [49]

to account for the observation that for some cell types the velocity has an oscillatory
behavior, with high correlation between velocities at certain time lags. Stochastic
infinitesimal equations were not employed in [49], but the model can be written as

dvt = (−avt − cut ) dt + b dWt

dut = (vt − kut ) dt,
(M2)

where ut represents the “memory” of the cell. The the matrix

(−a −c

1 −k

)
has com-

plex eigenvalues if (a − k)2 < 4c, and in this case the velocity shows oscillatory
behavior.

Previously, estimation of parameters in models such as (M1) and (M2) has been
carried out by the method of least squares [15,49] or generalized least squares [12].
Maximum likelihood estimation is the preferred method for efficient inference in
similar models arising from econometric and scientific time series analysis [20,
28]. When velocity is modeled as a linear Gaussian Markov process, and position
is observed at discrete times, the system is called a linear Gaussian state space space
model and the Kalman filter algorithm is available for calculation of the likelihood.
The details of applying linear, Gaussian state space methods to our models are not
given here, as in practice the general nonlinear method discussed in Section 5.3
was used for the linear models also.

3. Models for taxis

In the non-isotropic case many ways have been proposed by which a cell might
respond to a stimulus on the scale of cell translocation, and these are termed modes
of taxis [14]. Topotaxis occurs when a cell turns preferentially toward a stimulus.
Orthotaxis is said to occur if the magnitude of the velocity of the cell increases
when the direction is toward a stimulus. Klinotaxis occurs when the rate of turn-
ing decreases while traveling toward a stimulus. These three modes depend on the
direction of a stimulus, but there are further two modes that depend only on the
magnitude of a stimulus. Orthokinesis occurs when the magnitude of the velocity
decreases with the magnitude of a stimulus. Klinokinesis occurs when the rate of
turning increases with the magnitude of a stimulus.

The reader may wonder whether these are the only possible modes, and whether
the observed motion of a cell toward a stimulus can be uniquely characterized as
some combination of these modes. In fact these questions are of basic scientific
interest, since modes of taxis are experimentally testable consequences of mod-
els at the mechanistic level for the biochemistry and biophysics of cell motion.



Stochastic models for cell motion and taxis 27

Unfortunately there has been some confusion in the literature about how to decide
empirically upon the modes of taxis, based on observations from a system. Doucet
and Dunn [17] discuss this problem and give the example of classifying the mode of
taxis of a snake whose head can detect the level of a chemical attractant. By moving
its head from side to side this snake detects the gradient of the chemical and moves
up it. The whole snake appears to be capable of topotaxis, while mechanistically it
can only measure the magnitude of the stimulus and so should be capable only of
a kinesis.

To formalize modes of taxis mathematically one can avoid the snake paradox by
defining modes of taxis as properties of models rather than biophysical mechanisms.
The time and length scale on which we are modeling a process can determine the
characterization of the behavior. Recall the three identified scales of locomotion,
translocation and migration. On the scale of locomotion, in which the biophysi-
cal properties of a cell result in the extension of pseudopodia and traction along a
substrate, modes of taxis lose meaningfulness as a way to characterize the process.
On the scale of translocation the position and velocity of a cell, but not its internal
processes, are modeled. One can then attempt to define modes of taxis. If there is a
scale on which the internal processes regulating the velocity of a cell has negligible
memory the velocity process may be modeled by the infinitesimal equations

drt = µr(rt , θt , st , φt ) dt + σr(rt , θt , st , φt ) dWr
t + τr (rt , θt , st , φt ) dWθ

t

dθt = µθ(rt , θt , st , φt ) dt + σθ (rt , θt , st , φt ) dWθ
t + τθ (rt , θt , st , φt ) dWr

t

(M3)

Here (rt , θt ) are the polar coordinates for the velocity vt , and at location xt the
stimulus has magnitude st (xt ) and gradient vector φt (xt ) . For multiple stimuli, st
and φt take multiple values. Wr

t and Wθ
t are two independent Brownian motions.

Assuming the process {(vt , xt )} is continuous, Markov and time homogeneous, it
is a small restriction to suppose it has a representation of the form (M3). If a cell
has no preferred direction of turning without a directional cue, (a counter-example
was suggested by Alt [3]), µθ(rt , θt , st , φt ) fits the description of a topotaxis term.
If µr(rt , θt , st , φt ) is written as

µr(rt , θt , st , φt ) = µ(1)
r (rt ) + µ(2)

r (rt , st ) + µ(3)
r (rt , θt , st , φt )

then µ
(2)
r (rt , st ) has the form of an orthokinesis term and µ

(3)
r (rt , θt , st , φt ) has the

form of an orthotaxis term. Similarly, if σθ (rt , θt , st , φt ) is written as

σθ (rt , θt , st , φt ) = σ
(1)
θ (rt ) + σ

(2)
θ (rt , st ) + σ

(3)
θ (rt , θt , st , φt )

then σ
(2)
θ (rt , st ) can stake a claim as a klinokinesis term and σ

(3)
θ (rt , θt , st , φt ) as a

klinotaxis term. The remaining terms σr , τr and τθ have no clear roles to play in the
recognised modes of taxis, indicating that these modes form an incomplete picture
of the possible directional behavior in (M3). For example, a change in the random
variation in speed, caused by a varying level of a ligand that interacts with the speed
regulation mechanisms of a cell, might cause directional behavior through a term
σr(rt , st ).
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On the scale of migration when the location xt is supposed to have negligible
memory one can write down the infinitesimal equation

dxt = µ(st , φt ) dt + γ (st , φt ) dWt . (M4)

Here γ (st , φt ) is a 2 × 2 matrix which we may suppose is written γ (st , φt ) =
γ (1)(st ) + γ (2)(st , φt ). In this model the two concepts of rate of turning depending
on position and of speed depending on position are linked together in the infini-
tesimal variance term γ (st , φt ). Since the sample paths are not differentiable one
has to take a broad-minded view about “speed” and “rate of turning” to recognize
γ (1)(st ) as a combined term for both klinokinesis and orthokinesis, and γ (2)(st , φt )

as a term involving klinotaxis and orthotaxis. Similarly µ(st , φt ) can be thought
of as a taxis term, involving topotaxis, orthotaxis and klinotaxis. It does not gener-
ally make sense to include an infinitesimal drift term µ(st ) depending only on the
magnitude of the stimulus. An alternative interpretation of the parameters in (M4)
would come from applying a rescaling argument to (M3). The technique of adia-
batic elimination of fast variables [25,14] can provide such a rescaling for certain
particular cases of (M3).

The Fokker-Plank equation corresponding to the infinitesimal equation (M4)
is a generalization of the model of Keller and Segel [33] in which µ is written
as µ = χ∇c for a chemotactic coefficient, χ , and chemoattractant concentration,
c(x). In this context, γ is called the motility coefficient.

Choosing between the interpretations of persistence, periodicity, speed and
modes of taxis given by different models requires more precise definitions of these
concepts than are currently available in the biological literature. The goal here has
been to present some options, rather than to come down heavily in favor of any one
model.

4. Do kineses work?

There has been some controversy about whether a cell can move up a gradient of
a ligand (a small signaling molecule) just by adjusting its speed or rate of turning
according to the concentration of the ligand [17]. In other words, do orthokinesis
and klinokinesis work as a way of moving up concentration gradients, or must the
cell in fact have some memory or ability to detect gradients. A careful theoreti-
cal study of klinokinesis where the velocity of a bacterium is treated as a Markov
process was undertaken by Stroock [52]. The model considered fails to give con-
vincing evidence that kineses can work. The result obtained in [52] is that if {xt } is
the R-valued process giving the position of the bacterium up an increasing gradient
of a ligand, and f : R → R is a convex function, then the expected value E[f (xt )]
is monotone increasing with time. This would also be true if {xt } were an unbiased
random walk, or a martingale.

Comparing the Itô and Stratonovich solutions [31] to the SDEs introduced in
Section 3 gives a new insight into the controversy. Kinesis may be modeled in a
simple but instructive way by considering a stochastic process {xt }, taking values
in (0, ∞), defined by the infinitesimal equation

dxt = xt dWt .



Stochastic models for cell motion and taxis 29

This is a particular case of (M4). The Itô solution is xI
t = x0e

Wt−t/2 and the Stra-
tonovich solution is xS

t = x0e
Wt . The Itô solution tends to 0 almost surely, though

not in expected value, as E[xI
t | x0] = x0. The Stratonovich solution does not

tend to 0, and has increasing expected value E[xS
t | x0] = x0e

t/2. There is little
scientific reason for preferring one solution to the other, and this result suggests
that there is equally little reason to decide whether a kinesis results in motion up
the gradient or whether there must be an additional taxis for this to occur. It may be
valuable to determine whether speed and rate of turning vary with stimulus level
but an attempt to assign motion up a gradient to this phenomenon has no scientific
basis within the framework of (M4).

5. An investigation of galvanotaxis

Human keratinocytes (skin cells) migrate toward the negative pole in direct current
electric fields of physiological strength. This phenomenon is termed galvanotaxis
and is of particular interest in wound healing [42], as well as providing a tool for
more general study of directional cell motility. One of the challenges in practice
of investigating directional response to a stimulus is to set up experimentally the
controlled, uniform gradients required for clear and reproducible results. However,
such gradients are relatively easy to attain for DC electric fields, making galva-
notaxis a convenient model system for investigating basic aspects of directional
cell motility [21]. Galvanotaxis is used here to demonstrate the models and meth-
ods introduced in this paper. Previous approaches to mathematical modeling of
galvanotaxis may be found in [27] and references therein.

The data analyzed in Section 5.3 were collected by Dr. Fang at University of
California, Davis, to investigate the effect of calcium ion (Ca2+) concentration on
galvanotaxis. The experimental method follows that used by Fang et al. [21] to dem-
onstrate the role of the epidermal growth factor receptor (EGFR) in galvanotaxis.
Specifically, normal human keratinocytes from neonatal foreskin epidermis were
cultured and plated onto a glass coverslip coated with extra-cellular matrix (colla-
gen). The treated coverslip was placed in a galvanotaxis chamber as described by
Nishimura et al. [42]. Cells were then observed using phase contrast or differential
interference contrast optics with video images being digitally captured. The images
were typically captured at intervals of ten minutes, during a one hour observation
period, resulting in seven images per experiment.

We consider a nonlinear model for topotaxis in Section 5.1, and compare it with
a linear model for taxis introduced in Section 5.2. In Section 5.3 we find maximum
likelihood estimates of the parameters, and their errors, and discover that the linear
model is in fact more appropriate for these data. This linear model gives some jus-
tification for the statistic used to quantify taxis in [21,42], and also suggests other
even more sensitive measures.

5.1. A model for topotaxis in a uniform electric field

Empirically one notices that the speed of the cells is not much affected by the
electric field [42]. Theory and observation suggest that changes in cell direction
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are governed by local behavior around the edges of the leading lamella [19,4].
Supposing the taxis is generated by the difference in the stimulus (in this case,
electric potential) between the two ends of the lamella, the directional sensitiv-
ity would be greatest when the cell is moving perpendicular to the electric field.
If the electric field is taken to be parallel to the positive x-axis and the velocity
vt = (vx(t), vy(t))

′ has polar representation (rt , θt ) then model consistent with
the symmetry and translation invariance of the experiment as well these biological
considerations is given by

dvt =
( −α β sin θt

−β sin θt −α

)
vt dt + γ dWt (M5)

This model is an extension of (M1) and a special case of (M3). An application of
Itô’s lemma shows the polar representation of the infinitesimal equation defining
model (M5) to be

drt =
(

−αrt + 2γ 2

rt

)
dt + γ dWr

t

dθt = −β sin θtdt +
(

γ

rt

)
Wθ

t .

The magnitude of the velocity is governed by the same equation as for model (M1).
The directional behavior of model (M5) is a rotation of the direction of motion at rate
β sin θt toward θ = 0, thus (M5) fits the description of a topotaxis. Although (M5)
may be a satisfactory model for taxis generated by selectively increased activation
in a pre-existing lamella, it can also happen that the leading lamella is retracted
and a new lamella extended. From the representation in polar coordinates we see
that at small velocities the taxis term (−β sin θtdt) is dominated by the random
variation, which implies a uniform distribution for the orientation of newly formed
lamellae. Any attempt to model taxis using a single parameter must make simpli-
fying assumptions, and one interpretation of the data analysis in Section 5.3 is that
this particular assumption is inappropriate.

One could quantify galvanotaxis by estimating β in (M5). Another possibility,
particularly useful for testing the hypothesis that β = 0, is to calculate an approx-
imation to the Fisher efficient score. The likelihood function, L(α, β), when vt is
observed for t in the interval [0, T ] and γ is known, is taken to be the density
of the process (M5) having parameters (α, β, γ ) with respect to the process (M5)
with parameters (0, 0, γ ), evaluated at {vt , t ∈ [0, T ]}. This density, which in for-
mal probabilistic language is termed a Radon-Nikodym derivative, is given by the
Girsanov theorem ([43] theorem 8.6.4) as

L(α, β) = exp

{−β

γ 2

∫ T

0
r2
t sin θt dθt

− β2

2γ 2

∫ T

0
r2
t sin2 θtdt − α

γ 2

∫ T

0
rtdrt − α2

2γ 2

∫ T

0
r2
t dt + 2αT

}
.
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The Fisher efficient score statistic for testing the null hypothesis that β = 0 is the
partial derivative of the logarithm of the likelihood with respect to β evaluated at
β = 0 [46]. Up to an unimportant constant factor, this is

Z =
∫ T

0
r2
t sin θt dθt .

This quantity is unobservable, but an approximation can be made in terms of the
observed quantities, which are taken to be {xt , t = 0, 1, . . . , T }. Switching back
to Cartesian coordinates this becomes

Z1 =
T −1∑

t=1

v̂y(t)

|v̂(t)| (v̂y(t)	v̂x(t) − v̂x(t)	v̂y(t)).

with v̂x(t) = xt − xt−1, 	v̂x(t) = v̂x(t + 1) − v̂x(t), etc. From symmetry con-
siderations Z1 has expectation zero when {vt } is isotropic, and in particular when
β = 0 for any value of α. This follows from the anti-symmetry property that
Z1({vt }) = −Z1({−vt }). If independent, identically distributed replicates are avail-
able, the t-statistic can be used to test the hypothesis that β = 0.

5.2. A Linear Model for Galvanotaxis

A natural extension of (M1) for motion in a uniform electric field parallel to the
x-axis is

dvt = −α(vt − (β, 0)′)dt + σdWt . (M6)

In polar coordinates this becomes the nonlinear model

drt =
(
−α (rt − β cos θt ) + σ 2/rt

)
dt + σdWr

t

dθt = −β sin θt

rt
dt + σ

rt
dWθ

t .

Using the terminology of Section 3, this model includes both an orthotaxis and
a topotaxis term. There is no reason, apart perhaps from conceptual simplicity,
for preferring a model involving a single mode of taxis. Furthermore, models that
have a linear representation are considerably easier to work with. The Fisher score
statistic for (M6), up to a constant factor, is

Z2 = xT − x0.

The cosine statistic employed by [42,21] can be written as

Z3 = (xT − x0)/|xT − x0|,
which caters for variablity between cells by standardising Z2 by a measure of cell
speed. Viewed this way, a more natural modification of Z2 might be

Z4 = (xT − x0)
/ T −1∑

t=0

|xt+1 − xt |.

These statistics are compared on experimental data in Section 5.3.
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5.3. Results

The data analyzed in this section are a treatment group of 24 cells exposed to a
100mV/mm electric field, and a control group of 40 cells with no electric field.
Digital images were taken at seven time point separated by 10 minute intervals.
Some representative data are displayed in Fig. 1. In Table 1 the statistics Z1, . . . , Z4
are compared for testing the presence of an electric field effect. On these data, Z4
shows the strongest evidence for an effect, and only Z1 fails to show a statistically
significant effect (p < 0.05).

Parameter estimation for models (M5) and (M6) was carried out using max-
imum likelihood estimation. The likelihood was approximated using sequential

Fig. 1. (i) Cell paths resulting from a control experiment, prepared as in Fang et al. [21],
with no electric field. (ii) Cell paths from a treatment experiment, with an electric field off
100 mV/mm. The cathode is at the top of the page. The bar represents 100 µm

Table 1. The statistics Z1, Z2, Z3, Z4 were calculated for each of the 24 cells in the treatment
group and 40 in the control group. A two sample t-test was carried out to test the hypothesis
that the treatment had no effect, against a general alternative hypothesis. Z1 and Z2 have
units of pixels (1 pixel ≈ 1µm). Z3 and Z4 are dimensionless quantities.

Treatment group Control group t-test
Sample mean SE Sample mean SE p-value

Z1 53.5 18.2 29.8 16.3 0.354

Z2 21.7 5.2 3.6 4.6 0.015

Z3 0.490 0.126 0.095 0.120 0.035

Z4 2.21 0.50 0.22 0.49 0.010
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importance sampling (also known as particle filtering), a Monte Carlo technique
for nonlinear state space models [35,16], as described in [30]. Briefly, sequential
importance sampling yields the likelihood, as well as estimates of the unobserved
cell velocities, by recursive solution of the filtering and prediction problems. The
prediction problem requires simulating from the SDE describing velocity, for which
techniques are given in [36]. The filtering problem is then solved by resampling
from these simlulated paths with weights proportional to their likelihood given
the observed positions. Alternative methods for fitting partially observed diffusion
models include Monte Carlo Markov chain [50], Gaussian approximation impor-
tance sampling [20], and the EM algorithm [47]. Table 2 presents the resulting
estimates, measuring distance in µm, angle in radians, and time in units of 10
minutes.

The estimates of β divided by their SE’s for models (M5) and (M6) are similar
to the means of the statistics Z1 and Z2 in SE units. This may lead one to suspect
that the data are better represented by (M6) than (M5). There are many formal and
informal ways of assessing model fit. Formally one can test model specification
using the χ2 test of [54], or by comparing a nested sequence of models [5]. The
clearest evidence found by the author for prefering (M6) to (M5) is a plot of magni-
tude of cell displacement against direction, displayed in Fig. 2. This plot, shown for
the treatment group of cells and for simulations under both models with their fitted
parameter values, demonstrates qualitative agreement between the data and model
(M6). For both the data and (M6) there are relatively few occasions where cells
travel more than five pixels in the direction of the anode. Model (M5), however,
acquires its anisotropic behaviour by having fewer occurrences of cells traveling
in an anodal direction. Those cells that do travel towards the anode for (M5) do so
with almost as large displacements as those traveling towards the cathode.

6. Discussion

This paper has developed models for cell translocation using the tools of stochastic
calculus combined with appropriate techniques for statistical inference. Methods for

Table 2. Parameter estimates for models (M5) and (M6). Estimates are via maximum like-
lihood, with errors given by the sandwich estimator [54,30,32]. A normal approximation
gives approximate two-sided p-values for the difference between treatment and control.

Treatment Control p-value for
Estimate SE Estimate SE difference

M6 α 0.559 0.120 0.609 0.069 0.72

β 0.455 0.157 0.212 0.116 0.21

σ 7.94 1.29 7.34 0.78 0.69

M7 α 0.523 0.177 0.592 0.130 0.75

β 4.93 1.02 0.85 0.78 0.001

σ 7.22 1.39 7.24 0.93 0.99
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Fig. 2. Setting x(i)
t+1 − x(i)

t = (r
(i)
t cos θ

(i)
t , r

(i)
t sin θ

(i)
t )T , the displacement, r

(i)
t , is plotted

against the angle, θ
(i)
t , for each cell i and each time point t . (i) The treatment group. (ii)

Simulated data for model (M5), using the fitted parameter values. (iii) Simulated data for
model (M6), using the fitted parameter values

modeling single particles are relevant for other biological systems such as subcel-
lular particle tracking [48,26] and analysis of telemetry data on animal populations
[45,9]. In principle, the SDE approach allows generalization to interacting particles
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either through using correlated Brownian motions to drive the SDE [8] or through
including an interaction in the infinitesimal drift. Investigating cell-cell interactions
using these methods would be an exciting development of our work in this paper.

Modes of taxis can be given concise definitions in the context of models for
cell velocity. This can aid interpretation of experimental results. In the case of gal-
vanotaxis it has been previously observed that a DC field, while causing directional
behaviour, does not affect cell speed. For our analysis in Section 5.3 we found that
the DC field does not affect cell speed or persistence in the sense that estimates of σ

and α are similar for treatment and control, but not in the alternative sense (which
is a property of the discredited model (M5)) that the distribution of cell speed is
independent of cell direction.

In summary, models of cell translocation play a key role in quantitative and
qualitative understanding of experimental results. They are also required as input
to computer simulations of biological processes. There are many cell types and sit-
uations in which one might be interested in studying their motion. It is reassuring
to be able to write down, fit and assess a wide class of plausible models, though
relatively simple Ornstein-Uhlenbeck type models may still prove to be adequate.

Acknowledgements. The authors acknowledge many helpful discussions with David Bril-
linger. John Ionides and Mitzi Nakatsuka kindly assisted with typing and the preparation of
the figures. Several improvements have resulted from helpful suggestions by the reviewers.
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