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MAXIMUM SMOOTHED LIKELIHOOD ESTIMATION
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Abstract: Looking myopically at the larger features of the likelihood function, ab-

sent some fine detail, can theoretically improve maximum likelihood estimation.

Such estimators are, in fact, used routinely, since numerical techniques for maxi-

mizing a computationally expensive likelihood function or for maximizing a Monte

Carlo approximation to a likelihood function may be unable to investigate small

scale behavior of the likelihood. A class of maximum smoothed likelihood estima-

tors is introduced and shown to be asymptotically efficient for models possessing

local asymptotic normality. This theoretical result corresponds to good finite sam-

ple properties in two examples, with a likelihood that is smooth but multimodal,

and a likelihood that is not smooth.

Key words and phrases: Likelihood, local asymptotic normality, maximum likeli-

hood estimation, maximum smoothed likelihood estimation, smoothing.

1. Introduction

Estimating parameters by seeking the maximum of a smoothed likelihood

function was first proposed by Daniels (1960). Kernel smoothing of the likelihood

using a scale parameter decreasing to zero more rapidly than n−1/2 was suggested

as a way to find asymptotically efficient estimators under conditions weaker than

the classical result for maximum likelihood estimation of Cramér (1946). Barnett

(1966) investigated finite sample properties of Daniels’ estimator and discovered

through simulation that, when estimating the location parameter of a Cauchy

distribution from a small sample, a maximum smoothed likelihood estimator

(MSLE) could be 10% more efficient than the maximum likelihood estimator

(MLE). The motivation for maximizing a smoothed likelihood function in Daniels

(1960) is that the MLE can pay too much attention to small-scale features of the

likelihood. Smoothing has also been recognized as a tool for general stochastic

optimization problems (Kreimer and Rubinstein (1988)). Small, Wang and Yang

(2000) discuss smoothing as a method to resolve multiple roots of estimating

equations.

An alternative motivation arises when the likelihood function can only be

approximated by Monte Carlo methods. If independent Monte Carlo estimates

of the likelihood are available at a range of parameter values a natural approach,
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investigated by Diggle and Gratton (1984), is to fit a smooth curve approximating

the likelihood. Diggle and Gratton (1984) were motivated by inference for spatial

point process patterns. Similar issues arise for sequential Monte Carlo methods

(Doucet, de Freitas and Gordon (2001)). In this case, Hürzeler and Künsch (2001)

show that one may do better by constructing dependent Monte Carlo estimates

of the likelihood over a range of parameter values. The procedure of Hürzeler and

Künsch (2001) is an adaptation to sequential Monte Carlo of the trick of fixing

the seed of the Monte Carlo random number generator while comparing different

parameter values. Independent sequential Monte Carlo likelihood estimates are

still attractive for their reduced algorithmic complexity.

A computational issue motivating consideration of a smooth approximation

to the likelihood arises when the cost of evaluating the likelihood function is high,

and one may wish to approximate the likelihood from relatively few function

evaluations.

A final motivation for maximum smoothed likelihood (discussed in more

detail in Section 3) is that the MSLE methods introduced in this paper bear a

close resemblance to practical procedures carried out under the name of MLE.

Those who maximize a smoothed likelihood out of practical necessity might claim

to be finding an approximation to the MLE, when in fact MSLE has its own

theoretical appeal.

There are many ways in which one might smooth the likelihood. A wide

class of smoothers is introduced in Section 2. Section 4 gives some concrete

constructions and, in particular, shows that certain implementations of locally

weighted regression (Cleveland (1979)) fall in this class. Section 5 demonstrates

MSLE in a situation where the likelihood is smooth but multimodal — estimating

the location of spectral peaks. Section 6 gives some relevant asymptotic results.

Section 7 presents a second example, motivated by the asymptotic results for

non-smooth likelihoods, where MSLE is 15% more efficient than MLE. Section 8

is a concluding discussion.

2. A Class of Maximum Smoothed Likelihood Estimators

Definition 1. A smoother, S, takes real-valued functions on an arbitrary finite

subset G ⊂ R
d to functions on R

d: for each g : G → R, we have S(g) : R
d → R.

Since the likelihood and log likelihood are real valued functions on R
d, it

might appear natural that an appropriate smoother should map the space of

such functions into itself. However, Definition 1 suggests that the (log) likelihood

should first be sampled on a finite grid. The discrete sampling is required for

technical reasons, but is not a major limitation since numerical implementations

will necessarily be of this kind. We also require that S satisfy the following

quadratic approximation property.



MAXIMUM SMOOTHED LIKELIHOOD ESTIMATION 1005

(S1). Let q be a second degree polynomial on R
d, and suppose G specifies a

quadratic, as in Definition 2 below. There is a positive constants C, depending

on G but not on q, such that for any g : G → R,

|S(g)(t) − q(t)| < C(1 + tT t) × max
t∗∈G

|g(t∗) − q(t∗)|.

Definition 2. We say that G specifies a quadratic if there exists a subset G′ of

G with (d + 1)(d +2)/2 elements such that G′ has no more than (r +1)(r +2)/2

elements lying on a linear subspace of dimension r for r = 1, . . . , d.

This means that a function g′ on G′ may be uniquely interpolated by a

polynomial of degree ≤ 2.

The condition (S1) formalizes a requirement that if g can be well approx-

imated by a second degree polynomial q, on G, then the smoother produces

a function S(g) close to q. In Section 4 we develop ways of constructing and

modifying smoothers to satisfy (S1).

Now suppose we have a sequence of statistical experiments corresponding to

families of measures Pθ,n with θ ∈ Θ ⊂ R
d and n = 1, 2, . . . , giving rise to the

log likelihood ratio

Λn(θ, φ) = log
( dPθ,n

dPφ,n

)

.

Formally, we set Λn(θ, φ) = 0 if dPθ,n/dPφ,n is zero or undefined. We will apply

the smoother to a rescaled log likelihood function evaluated on a set of points

which, with high probability, lie in a neighborhood of the true parameter value

θ0. Specifically, let θ̃n be a sequence of preliminary estimators taking values on

a grid n−1/2(z1Z × . . . × zdZ) for some constants z1, . . . , zd > 0. A discretization

is required for technical reasons in the proof of Theorem 1, and will rarely be

an issue in practice. It prevents θ̃n from selecting an unusual feature of the

likelihood, such as the maximum. For the asymptotic analysis we require that θ̃n

is n1/2-consistent. With G a finite subset of R
d, as before, we define the rescaled

log likelihood, λn : G → R, by

λn(t) = Λn(θ̃n + tn− 1

2 , θ̃n). (1)

An MSLE corresponding to the smoother S is then

θ̂n = θ̃n + n− 1

2 × arg max
t

S(λn)(t). (2)

The maximum need not be unique. The estimate is undefined when a maximum

does not exist. For the remainder of this article we will mean by MSLE an

estimator of the form (2). Note that θ̃n plays two roles in (1), defining the

origin of the local coordinates, and specifying the measure with respect to which
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the likelihood is calculated. In the situation where each measure Pθ,n has a

positive density with respect to a measure µn, typically Lebesgue or counting

measure, this second role becomes unimportant. We can then replace (1) by

λn(t) = log(dPθ̃n+tn−1/2/dµn) without changing the estimator θ̂n. In the case of

an independent sample this becomes λn(t) =
∑n

i=1 log f(xi | θ̃n + tn−1/2), where

x1, . . . , xn are drawn from a density f(x|θ).

3. MSLE Corresponds to Accepted Statistical Practice

A practical procedure for likelihood-based parameter estimation from a com-

plicated likelihood function might include the following steps.

(P1) Take several starting values, θk, k = 1, . . . ,K. Hopefully knowledge of the

particular application will suggest some reasonable values of θk. These might

also come from some more readily available estimator, such as maximum

pseudo-likelihood or the method of moments.

(P2) For each θk, run a numerical optimization procedure starting at θk to at-

tempt to find the maximum of the likelihood function. Hopefully this al-

gorithm will terminate under a reasonable convergence criterion to give an

estimate θ̂k.

(P3) If all the θ̂k are close, use their common value θ̂ for an estimate of θ̂0. An

estimate of the error on θ̂ can come from numerical calculation of the second

derivative of the likelihood function at θ̂, using asymptotic properties of the

likelihood function.

(P4) If the values of θ̂k for 1 ≤ k ≤ K vary considerably, try to use knowledge of

the subject matter, the form of the likelihood function and the numerical

algorithm used to understand why. Possibly one or more of the estimates

may be rejected as unreasonable.

(P5) In the event of either (P3) or (P4), plot the region of interest of the likelihood

function, or try to find some graphical representation such as marginal plots

when the parameter space is of too high dimension to allow a standard plot.

The MSLE is similar to the method carried out in (P1)−(P5), although a

statistician following these steps might well claim to be calculating an MLE.

In particular, plotting the likelihood function in a region around the estimated

value gives an approximation to the likelihood function based on evaluations on

a grid of points, as used for the MSLE. Thinking of the procedure as MSLE

instead of MLE has some consequences. One is encouraged to spend most of the

computational effort investigating features of the likelihood on the same scale
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(n−1/2) as the error of the estimation, and the importance of the initial values is

made explicit.

4. Constructing an MSLE

First we show that a least squares quadratic approximation results in a

smoother satisfying (S1). This result is used to investigate the use of widely used

smoothing methods, such as those described by Hastie and Tibshirani (1990).

Lemma 1. Let q : R
d → R be a quadratic polynomial, q(t) =

∑

i≤j aijtitj +
∑

i biti + c, and write α = (a11, . . . , add, b1, . . . , bd, c)
T . Define the least squares

quadratic smoother, SLS, to map g : G → R to the quadratic q̃ with coefficients

α̃ = (ã11, . . . , c̃)
T minimizing

∑

t∗∈G(q̃(t∗) − g(t∗))2. The smoother SLS satisfies

(S1).

Proof. Write γ̃ for a vector in R
|G| listing {g(t∗) : t∗ ∈ G}, and let γ be the

equivalent vector of {q(t∗) : t∗ ∈ G}. Since G specifies a quadratic, there is a

unique least squares quadratic fit to g whose coefficients satisfy a linear equation,

say α̃ = Hγ̃, with H depending only on G. Since q is the least squares quadratic

fit to itself, we have α = Hγ and so α̃−α = H(γ̃−γ). This gives a bound on the

coefficients of the quadratic (SLS(g) − q) which is linear in maxk(|γ̃k − γk|), i.e.,

one can find a vector β with |α̃i − αi| < βi maxt∗∈G |g(t∗)− q(t∗)|. One can then

choose C to make C(1 + tT t) greater than the quadratic with coefficient vector

β, demonstrating that (S1) is satisfied.

Locally weighted polynomial smoothers (Cleveland (1979)) form a widely

used class of smoothers. The implementation of these methods employed in the

examples of Sections 5 and 7 is the loess algorithm written by B. D. Ripley,

available in the modreg package for the R language. By default, loess calculates

a local quadratic surface by least squares and so, following Lemma 1, satisfies

(S1). Fitting local linear surfaces via robust M-estimation, as originally suggested

by Cleveland (1979), is available using loess via non-default options.

We now consider how to coerce more general smoothers into satisfying (S1).

For a smoother, S, define the modification S ′ by

S′(g) = SLS(g) + S(g − SLS(g)|G),

where SLS(g)|G is the restriction to G of the least squares quadratic smoother

from Lemma 1. S ′ satisfies (S1) as long as S maps small functions to small

functions, i.e., if there is a constant D with |S(ε)(t)| < D maxt∗∈G |ε(t∗)|.

The condition (S1) has two main effects: it allows the smoother to extrap-

olate in an (asymptotically) reasonable way, and it ensures that the smoother

does not destroy the (asymptotic) quadratic structure of the log likelihood. The
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modified smoother S ′, which essentially smooths the residuals from a quadratic

approximation, provides a simple way to enjoy the flexibility of general smoothing

methods without suffering (asymptotic) disadvantages.

5. An Example: Maximum Smoothed Likelihood Estimation of Spec-

tral Peaks

Identifying spectral peaks and estimating relevant parameters is critical

for analysis of protein structure by nuclear magnetic resonance spectroscopy

(Wüthrich (1995)). It is necessary to attempt identification of peaks with inten-

sities only slightly over the noise level, so efficient methods with appropriate

uncertainty estimates are required. The spectra may contain hundreds of peaks

and may have up to four frequency dimensions.

We consider a simplified caricature of a peak estimation problem, with just

one peak, in one dimension, observed with white noise. Suppose that 2n ob-

servations are made from a stationary process with spectral density given by

f(ν|θ) = 1 +
h

1 + (ν−θ
w )2

. (3)

Inference may be based on the Whittle model for the periodogram (Shumway

and Stoffer (2000, Section 3.7)),

Ik = I(νk) = f(νk|θ)Ek. (4)

Here, νk = k/2n for k = 1, . . . , n − 1, and the Ek are independent Exponential

random variables with density e−x for x > 0.

Fixing the height and width of the peak results in a location estimation

problem for θ. The MLE is asymptotically well behaved for large n, but in

practice the likelihood has many local maxima. A worked example is presented

in Figure 1 and the following caption. MSLE was found to deliver a 6% efficiency

improvement over MLE, when both correctly identified the peak. MSLE also

identified the peak a little more often.

As well as demonstrating one situation where MSLE outperforms MLE, it is

worth noting that MSLE was found to be comparable to MLE for a wide variety

of parameter values and amounts of smoothing (results not shown). The practical

advantages of smoothing the likelihood to simplify maximization in more complex

situations may be more compelling than small differences in efficiency.

In this example the likelihood is smoothed globally. The initial estimator

does not play a role, and so there is no reasonable implementation of MQLE.

However, we have demonstrated here that the more general class of MSLE esti-

mators is nevertheless useful. For larger problems, when exhaustive maximiza-

tion is not possible, maximization of the likelihood or smoothed likelihood may
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require a reasonable initial estimate and/or the use of numerical optimization
techniques.
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Figure 1. (a) The true spectral density (solid line) for (3) with θ0 = 0.25,
h = 4 and w = 0.05, and a realization from (4) with n = 200 (dotted lines);
(b) The log likelihood for this realization (dashed line) and the smoothed
likelihood (solid line). Smoothing was carried out by applying loess to
the log likelihood evaluated at θ = k/2n, k = 1, . . . , n − 1. MSLE (using
loess with smoothing parameter span = 0.1) was 6% more efficient than
MLE, measured from the relative variance of MLE and MSLE conditional on
both methods correctly identifying the peak (i.e., when both estimates were
within θ0 ± 5w). This occurred 92.9% of the time. MSLE was also slightly
more likely to identify the peak (93.35% compared to 93.19%, a difference
of 0.16%). Results are based on a simulation of size 200, 000.

6. Asymptotic Properties of Maximum Smoothed Likelihood Estima-
tors

Following Le Cam (1986), a family of measures {Pθ,n, θ ∈ Θ} with Θ an open
subset of R

d is said to have local asymptotic normality (LAN) at θ0 if there exists
a positive definite matrix K and a sequence of random variables {∆n} such that,
for any bounded sequence {tn} in R

d,

Λn

(

θ0 + tnn− 1

2 , θ0

)

= tTn∆n −
1

2
tTnKtn + op(1; θ0),

(5)
∆n

d
−→ N(0,K) under Pθ0,n.

Here,
d

−→ indicates convergence in distribution, and ζn = op(αn; θ) means that
ζn/αn → 0 in probability under Pθ,n. LAN implies that the probability of
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dPθ,n/dPθ0,n being zero or undefined tends to zero. The matrix K is thought of as
the asymptotic information rate concerning θ; it coincides with the Fisher infor-

mation under regularity conditions. Hájek’s convolution theorem justifies calling

an estimator θ̂n of θ asymptotically efficient if LAN holds and n1/2(θ̂n − θ0)
d

−→
N(0,K−1). More lengthy discussions of LAN can be found in Bickel, Klaassen,
Ritov and Wellner (1993) and Van der Vaart (2002). A generalization of LAN

that could be similarly used to motivate MSLE is the local asymptotic quadratic
condition of Le Cam and Yang (2000, Section 6.2).

To demonstrate the asymptotic efficiency of the MSLE θ̂n, we show that it
is asymptotically equivalent to Le Cam’s efficient one step estimator θ̄n, in the

sense that |θ̂n − θ̄n| = op(n
−1/2; θ0). The one-step estimator of Le Cam and

Yang (2000, Section 6.3) is the special case of MSLE which we have called the
maximum quadratic likelihood approximation estimator (MQLE). The MQLE

may be defined as an MSLE where G is a set of (d+1)(d+2)/2 points specifying
a quadratic, and S returns the interpolating polynomial of degree ≤ 2.

Theorem 1. If {Pθ,n} has LAN, then any two MSLE estimators, θ̂n and θ̂′n, are

asymptotically equivalent in that |θ̂n − θ̂′n| = op(n
−1/2; θ0).

Heuristically, Theorem 1 holds because any smoother satisfying (S1) will
asymptotically return a smoothed log likelihood close to a quadratic approxima-

tion guaranteed by LAN. Lemma 2 gives a formal approximation result.

Lemma 2. Let θ̃n be the n1/2-consistent estimator in (2), and define

qn(t, u) = tT (∆n − Ku) −
1

2
tTKt, (6)

with K and ∆n identified in (5). Then λn(t) in (1) and qn(t, u) satisfy

max
t∗∈G

(λn(t∗) − qn(t∗, n
1

2 (θ̃n − θ0))) = op(1; θ0). (7)

Proof of Lemma 2. We can choose M so that Pθ0
(|θ̃n−θ0| ≤ Mn−1/2) < ε for a

given ε > 0 and sufficiently large n. Now let τn = n1/2(θ̃n−θ0) if n1/2|θ̃n−θ0| ≤ M

and τn = 0 otherwise, so {τn} is a bounded sequence. Define the truncated

rescaled log likelihood, λ′
n(t), as

λ′
n(t) = Λn(θ0 + n− 1

2 (t + τn), θ0 + n− 1

2 τn)

= Λn(θ0 + n− 1

2 (t + τn), θ0) − Λn(θ0 + n− 1

2 τn, θ0) + αn

= (tT + τT
n − τT

n )∆n −
1

2
(t + τn)T K(t + τn) +

1

2
τT
n Kτn + βn

= tT (∆n − Kτn) −
1

2
tT Kt + βn

= qn(t, τn) + βn. (8)



MAXIMUM SMOOTHED LIKELIHOOD ESTIMATION 1011

The term αn = op(1; θ0) allows for a possible lack of absolute continuity. The
LAN assumption gives βn = op(1; θ0) since τn takes values on a set of bounded
size, namely

τn ∈ {θ0n
1

2 + z : z ∈ (z1Z × · · · × zdZ) with |θ0n
1

2 + z| ≤ M} ∪ {0}.

From (8), recalling the construction of {τn}, we see that λn(t) − qn(t, n1/2(θ̃n −
θ0)) = op(1; θ0). Finally, to prove the Lemma, notice that G is a finite set.

Proof of Theorem 1. The maximum of qn(t, n1/2(θ̃n − θ0)), defined in (6),
occurs at t = K−1∆n − n1/2(θ̃n − θ0). Now (7) together with (S1) gives

arg max
t

S(λn(t)) = K−1∆n − n1/2(θ̃n − θ0) + op(1; θ0).

We can now write a bound for the MSLE,

θ̂n = θ̃n + n− 1

2

(

K−1∆n − n
1

2 (θ̃n − θ0) + op(1; θ0)
)

= θ0 + n− 1

2 K−1∆n + op(n
− 1

2 ; θ0). (9)

The result (9) does not depend on the form of the MSLE used, proving the
theorem.

Theorem 1 gives the asymptotic distribution of the MSLE when K is known.
If S(λn(t)) is sufficiently smooth that a condition analogous to (S1) holds for the
matrix of second derivatives,

∇2S(g)(t) =
[ ∂2

∂ti∂tj
S(g)(t)

]

,

then K may be estimated by K̂n = −∇2S(λn)(n1/2(θ̂n−θ̃n)). Confidence intervals
and hypothesis tests may then be constructed following the methods described
by Le Cam and Yang (2000, Section 6.8) for MQLE.

7. MSLE for Non-Smooth Likelihoods

The framework of LAN has been convenient to study asymptotic properties
of maximum smoothed likelihood estimators. To compare MSLE to MLE concep-
tually, it is helpful to compare LAN to the property that the maximum likelihood
estimator is consistent, asymptotically efficient and asymptotically normal, which
we call MLCEN. Widely used Cramér (1946) type conditions ensuring MLCEN
for independent observations imply LAN (Le Cam and Yang (2000, Section 7.2)).

Non-smooth likelihoods, sufficiently pathological for Cramér type conditions
to fail, provide an opportunity for MSLE to out-perform MLE. Consider the shift
family with densities on R given by

f(x|θ) ∝ exp(−|x − θ|α). (10)
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For α > 1/2, this family possesses LAN, though for α ≤ 1 it does not satisfy

Cramér type conditions (Le Cam and Yang (2000, Section 7.2)).

Table 1. The relative efficiency of MSLE, MQLE and the median compared

to MLE for model (10) with α = 0.6, θ = 0, and a sample of size n = 100.

This was estimated by simulation, as the ratio of the variance of the MLE

to that of the estimator. The MSLE was calculated by evaluating the log

likelihood at 12 points, equally spaced on an interval of width 1.6, centered

on the median. The loess smoother, as programmed in R with default

parameters, was then applied. The MQLE was calculated from the likelihood

evaluated at the median and points distant 0.4 each side. The quadratic was

maximized over this interval of width 0.8, to handle rare cases when the

estimator would otherwise be badly behaved.

median MQLE MSLE

Efficiency 1.01 1.15 1.15
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Figure 2. The log likelihood and MLE (solid lines) compared with the

smoothed likelihood and MSLE (dashed lines) and the quadratic likelihood

approximation and MQLE (dotted lines) for one realization from (10) with

α = 0.6, θ = 0, and a sample of size 100.

The MLE, MSLE, median and MQLE are compared in Table 1. In this case,

the MSLE and MQLE share a 15% increase in efficiency over the MLE. A sample

likelihood function is presented in Figure 2. The example illustrates the difference

between MQLE and a single iteration of Newton-Raphson maximization: the
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quadratic approximation does not evaluate the second derivative of the likelihood,

but looks for a larger scale approximation. This suggests one answer to the

question “why not repeat the quadratic approximation until convergence?” The

MSLE was usually closer to the MLE than was the MQLE. One could argue

that the success of MQLE on this example may be due to symmetry. MQLE

imposes a symmetric likelihood approximation which in this particular case is

appropriate.

8. Discussion

Many theoretical developments have taken place in the framework of LAN,

and in related situations such as local asymptotic mixed normality (Van der

Vaart (2002)). To take advantage of these advances requires estimators based on

LAN. The family of maximum smoothed likelihood estimators introduced in this

paper fills much of the gap between the rather crude one-step estimator and the

widely accepted MLE, helping to resolve theoretical and practical difficulties that

may arise with likelihood based estimation methods. Even when Cramér type

conditions for the MLE hold, the weaker LAN condition may be considerably

easier to check — compare, for example, Bickel and Ritov (1996) with Bickel,

Ritov and Ryden (1998).

This paper has taken a frequentist viewpoint, but has some connections to

Bayesian methods. MLE may be compared to maximum a posteriori estimation.

A posterior distribution, in the same way as a likelihood function, may have small

scale features which raises similar issues to those discussed in this paper. Another

relationship is that the posterior mean and MSLE both provide an averaging

over the likelihood function. Choosing a smoother is then loosely analogous to

choosing a prior distribution.

The asymptotic properties of MSLE suggest explanations for observed finite

sample properties. Asymptotically, the smoother used is relatively unimportant

as long as one smooths on a scale of n−1/2 (which is more smoothing than pre-

viously suggested in the literature). Cross-validation techniques, or simulation

studies, can be used to compare different smoothers for particular applications.

Asymptotically, MSLE can work in situations where MLE fails. Our examples

suggest that, when the likelihood is multimodal or is not smooth, this can trans-

late to an increased finite sample efficiency for MSLE over MLE.
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