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Abstract

Diffusion processes observed partially or discretely, possibly with observa-
tion error, arise when constructing stochastic models in continuous time. The
method of Sequential Monte Carlo provides an alternative to Markov Chain
Monte Carlo methods, and can be effective in complex models at the cutting
edge of scientific research. This paper introduces Sequential Monte Carlo ap-
proaches to inference for partially observed diffusion processes.

New methods for solving the filtering, predicting and smoothing problems
are developed. Two new filtering algorithms are compared with existing meth-
ods on a nonlinear problem for which a closed form solution exists. A novel
measure of filter accuracy helps to highlight strengths and weaknesses of the
methods.

1 Introduction

When trying to simulate a realization x1,T = (x1, . . . , xT )′ from a high dimensional
density fT (x1,T ) it may help to work sequentially, drawing x1,t from some density
ft(x1,t) then updating x1,t to generate a draw from ft+1(x1,t+1). This approach has
been used for computer simulation of long-chain polymers since the 1950’s (Hammersley
& Morton 1954, Rosenbluth & Rosenbluth 1955). We refer to such a technique as Se-
quential Monte Carlo (SMC). Many researchers independently discovered that SMC is
readily applicable to state space models (Gordon, Salmond & Smith 1993, Kitagawa
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1996, Isard & Blake 1996, Del Moral 1996, Crisan & Lyons 1997). A state space
model arises when xt is a Markov process, called the state process, and there is an
observed process yt with conditional densities f(yt|y1,t−1, x1,t) = f(yt|xt). One typi-
cally wishes to sample from the conditional densities f(xt|y1,t) [filtering], f(xt+1|y1,t)
[prediction] or f(xt|y1,T ) [smoothing]. We assume these densities exist, and note the
convention that f(· | ·) is a generic density which is then specified by its arguments.
The densities may further depend on an unknown parameter vector θ for which in-
ference is required. State space models have many applications including signal pro-
cessing (Kalman 1960, Anderson & Moore 1979), time series analysis (Shumway &
Stoffer 2000, Durbin & Koopman 2001), economics (Harvey 1989), finance (Shephard
& Pitt 1997), biology (Ionides, Fang, Isseroff & Oster 2003), meteorology (Evensen &
van Leeuwen 1996), neuroscience (Brown, Frank, Tang, Quirk & Wilson 1998), and
various others (Doucet, de Freitas & Gordon 2001, Section IV). It appears that real
world phenomena are often well modeled by some Markov process with sufficiently
rich state space, perhaps constructed according to physical or chemical or economic
principles, about which we can make only noisy or incomplete observations.

Here, we are concerned with the situation in which x1,T is a discretization of
a continuous time process {xt, 1 ≤ t ≤ T}, with continuous sample paths. This
includes all the applications listed above, while ruling out inherently discrete state
space models such as genetic inheritance (Lander & Green 1987) and speech recogni-
tion (Rabiner 1989). Let us take {xt} to be an Ito diffusion in Rm,

dxt = µ(xt, t, θ)dt + σ(xt, t, θ)dWt, (1)

with σ an m × m matrix and {Wt} Brownian motion in Rm. We assume that µ
and σ are sufficiently regular to guarantee the existence of a unique solution to (1)
(Oksendal 1998, Theorem 5.2.1). Suppose yt lies in Rn and is given by

yt = C(t, θ)xt + D(t, θ) + ηt, (2)

with ηt ∼ N(0, τ(t, θ)τ 1(t, θ)). For now, we assume that σσ′ and ττ ′ are invertible.
The dependence of µ, σ, C and τ on t and θ will only be noted explicitly where
required. The methods of this paper also apply to a general observation equation,

yt = g (xt, ηt, θ, t) ,

with a linear/Gaussian approximation of the form (2).
Two new filtering algorithms appropriate to the system (1) and (2) are proposed

in Sections 1.2 and 2.5. Section 2 discusses issues arising in the implementation of
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these algorithms. Section 3 works through an example. Filters are compared by their
ability to approximate the log likelihood of the observations, and this criterion is
examined in Section 4. Section 5 investigates the situation when ττ ′ is not invertible.
Section 6 is a concluding discussion.

1.1 A Shortcoming of Standard SMC Methods for Partially
Observed Diffusions

A standard SMC approach, sometimes termed the particle filter, is to solve (in a
sequential Monte Carlo sense) the prediction equation

f(xt+1|y1,t) =

∫
f(xt|y1,t)f(xt+1|xt)dxt (3)

and the filtering equation

f(xt|y1,t) =
f(xt|y1,t−1)f(yt|xt)∫
f(xt|y1,t−1)f(yt|xt)dxt

. (4)

The solution is recursive. Suppose {XF
t−1,j, j = 1, . . . , J} has an empirical distribution

approximating f(xt−1|y1,t−1). Then using (3), each “particle” XF
t−1,j can be moved

according to the transition density of the state space to give a particle XP
t,j whose

marginal distribution approximates the prediction density, f(xt+1|y1,t). The filtering
problem is then solved by setting {XF

t,j} to be a sample drawn with replacement from
{XP

t,j} with sampling weights given by

wj = f(yt|xt=XP
t,j).

This method, and many variations proposed in (Doucet, de Freitas & Gordon
2001), have the difficulty that they work poorly when the observation error is small.
Heuristically, in this situation {wj} should have high variance since most of the pro-
posal steps will be inconsistent with the new observation. In the extreme case, where
the density f(xt+1|y1,t+1) exists on a region of lower dimension than f(xt+1|y1,t), all
the wj are zero and the algorithm breaks down. This will typically happen if ττ ′ is
not invertible.

In the case where τ = 0 and C = I, the identity matrix, (1) and (2) specify a
discretely observed diffusion process, which has applications such as economics and
finance. Much work has been done in this case (see Elerian, Chib & Shephard (2001),
and references therein) but the framework considered here provides some fresh insights
and new methodology. This situation is given special consideration in Section 5.
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1.2 A New SMC Approach - the Conditional Particle Filter
(CPF)

It has been pointed out by Liu, Chen & Logvinenko (2001) that the prediction step can
be replaced by a proposal step in a general SMC framework. Pitt & Shepard (2001)
investigated making the proposal distribution depend on the observation process,
and coined the term “adaptive particle filter” for such an algorithm. Our approach
to remedy the difficulties discussed in Section 1.1 is to develop an adaptive particle
filter which is convenient for systems such as (1) and (2). (3) and (4) may be replaced
by a proposal step from a density

fp(xt, xt+1|y1,t+1) = f(xt|y1,t)f(xt+1|xt, yt+1), (5)

followed by a filtering step

f(xt+1|y1,t+1) ∝
∫

fp(xt, xt+1|y1,t)f(yt+1|xt)dxt. (6)

This works because

f(xt+1|y1,t+1) =

∫
f(xt, xt+1|y1,t+1)dxt

=

∫
f(xt|y1,t+1)f(xt+1|xt, yt+1)dxt

=

∫
f(xt|y1,t)f(yt+1|xt)

f(yt+1|y1,t)
f(xt+1|xt, yt+1)dxt.

The proposal step is solved (in a sequential Monte Carlo sense) by moving each
particle XF

t−1,j to XP
t,j by drawing from f(xt|yt, xt−1=XF

t−1). The filtering step then
assigns weight wi to XP

t,j given by

wj = f(yt|xt−1=XF
t−1,j). (7)

{XF
t,j} can then be constructed by resampling with replacement from {XP

t,j} with
weights wj. The key to the algorithm is that, for the class of models including (1)
and (2), this preliminary trial and filtering steps can be solved (again, in a Monte
Carlo sense). We call this algorithm a conditional particle filter (CPF). Section 2
gives the details necessary to implement a CPF algorithm.
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2 Implementing Conditional Particle Filters

Section 2.1 discusses simulating from f(xt|xt−1, yt) and Section 2.2 discusses estimat-
ing f(yt|xt−1). All SMC methods usually involve resampling, and Section 2.3 discusses
resampling issues for CPF. Section 2.4 discusses numerical solutions to SDEs. Carry-
ing out CPF using a crude numerical solution gives rise to an algorithm of interest in
its own right, presented in Section 2.5, which we call a particle Kalman filter (PKF).
Parameter estimation and possible extensions are mentioned in Sections 2.6 and 2.7.

2.1 Simulating Conditional Diffusions

Conditioning the diffusion {xt} on xo and y1 results in a conditional diffusion {x̂t} =
{xt|x0, y1}. The SDE for x̂t is dx̂t = µ̂(x̂t)dt + σ(x̂t)dWt, for 0 ≤ t ≤ 1. Here σ(x̂t)
is the same as in (1) and µ̂(x̂t) is not in general easy to calculate. Nevertheless,
methods building on Roberts & Stramer (2001) and Ozaki (1992) can be used to
simulate {x̂t, 0 ≤ t ≤ 1} based on a local linearization.

Let x̃t be an approximation to x̂t, with SDE

dx̃t = µ̃(x̃t)dt + σ(x̃t)dWt

Write P, P̂ and P̃ for the laws of {xt | x0}, {x̂t} and {x̃t} respectively, for 0 ≤ t ≤ 1.
A key point is that, to carry out importance sampling from P̂ using trial distribution
P̃ it is sufficient to be able to calculate dP̃/dP , which is proportional to dP̃/dP̂ .
Thus, although µ̃ should be similar to µ̂ in order to have a computationally efficient
simulation, it is not necessary to know µ̂. This property is the functional form of the
familiar identity

f(x|y) =
f(x, y)

f(y)
∝ f(x, y),

where the constant of proportionality depends on y. The case where ττ ′ is singular
requires more care, as dP̂/dP may not exist, and is dealt with in Section 5.

2.2 Estimating the Conditional Density

An analogous situation to calculating the likelihood in a state space model via the
methods of Section 1.2, for a bivariate random variable (X, Y ) with density f(x, y),
is to estimate f(y) using

f(y) ≈ f̂(y) =
1

K

K∑

k=1

f(y|x=Xk) (8)
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where Xk is a sample from density f(x). If Xk is instead drawn from another density
g(x) we have an estimate

f(y) ≈ f̂(y) =
1

K

K∑

k=1

f(Xk)

g(Xk)
. (9)

The density g(x) can be chosen to depend on the observation, y, and so the ideal
choice would be g(x) = f(x|y), in which case Var(f̂(y)) = 0. Of course, f(x|y) is not
a density that can usually be calculated explicitly for nonlinear state space models
though it can be sampled from using the methods of Section 2.1. Instead, we take
g(x) to be a linearized approximation to f(x|y). Using the notation of Section 2.1,
we can rewrite (9) in the form required in (7), as

f(y1|x0) = EP [f(y1|x1)]

= EP̃ [f(y1|x1=x̃1)
dP

dP̃
]

≈ 1

K

K∑

k=1

f(y1|x1=x̃
(k)
1 )

dP

dP̃
{x̃(k)

t } (10)

where {x̃(k)
t } is a sample from P̃ . Conveniently, the same sample from P̃ can be used

to compute (10) as is used for importance sampling from {x̂t} in Section 2.1.

2.3 Weights and Resampling

Manipulating weights in importance sampling type methods, such as SMC, can be
done following the principle of properly weighted samples (Liu, Chen & Logvinenko
2001).

Definition A weighted sample {(Xi, wi), i = 1, . . . , N} is properly weighted for a
density f(x) if, for some constant C and any square integrable function h(x),

E[h(Xi)wi] = C

∫
h(x)f(x)dx.

For any set of positive resampling weights {ai}, sampling with replacement from
{(Xi, wi/ai)} with weights ai results in a new (approximately) proper sample for f(x)
(Rubin 1987). The originally used SMC resampling weights were ai = wi (Kitagawa
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1996, Gordon, Salmond & Smith 1993). These weights prune heavily any Xi with
small weight wi, allowing computation at future steps to concentrate on “successful”
particles. In practice, lighter pruning, say with ai =

√
wi, may be preferable (Liu,

Chen & Logvinenko 2001).
In fact, for the CPF and PKF algorithms proposed here, resampling may be

unnecessary. Heuristically, the reason for this is that for these algorithms the particles
can be expected to have mixing properties. In the original SMC each particle x̃t moves
around the state space according to the unconditional state Markov transition density
f(xt|xt−1). Pruning is then required to remove particles whose location is unlikely
given the observation process. In CPF and PKF, a particle x̂t moves according to
a conditional Markov transition density f(xt|xt−1, yt). Mixing properties of similar
conditional processes have been studied by (Bickel & Ritov 1996, Bickel, Ritov &
Ryden 1998, Jensen & Petersen 1999). If mixing occurs, then the distribution of x̂t

should not stray too far from the filtering distribution f(xt|y1,t). The proper weight
of x̂t for f(xt|y1,t), the filtering weight, is

w
(f)
t =

t∏
s=1

vs

where vs = f(ys|xs−1 = x̂s−1). When t is not small, w
(f)
t typically has high variance.

However, if x̂t is mixing then the recent weights will be more relevant, so truncated
weights

w
(f)
t,k =

t∏

s=t−k

vs

can be used. A similar issue arises in smoothing, where (x̂t, w
(s)
t ) is properly weighted

for f(xt|y1,T ) with smoothing weight and truncated smoothing weight given by

w
(s)
t =

∏T
s=1 vs, w

(s)
t,k =

∏t+k
s=t−k vs.

Although these truncated weights somewhat resemble previous methods using trun-
cated smoothers such as (Anderson & Moore 1979, Sections 7.3 and 9.6) and (Kitagawa
& Sato 2001), this particular method appears new. Note it is only the weights and
not the particle process that is truncated. A reasonable value of k can be selected
by bias/variance tradeoff considerations. A large k increases the Monte Carlo vari-
ance of an estimated quantity (such as the mean or quantiles of the conditional state
process, or the likelihood of the observations). A small k introduces bias due to the
truncation.

7



Note that there may be room for improvement on truncation as a way of taking
advantage of mixing. Filtering weights of the form

w
(f)
t = exp

{ t∑
s=1

ρt−s log vs

}

might be considered, for example.

2.4 Numerical Methods

For a practical implementation of CPF the necessary sample paths and stochastic
integrals must be discretely approximated. Appropriate numerical methods are dis-
cussed by Kloeden & Platen (1999). Different algorithms arise for weak and strong
approximations. Here, we use strong approximations in order to guarantee the correct
joint distributions of solutions to varying SDEs driven by the same Brownian motion.

The Euler scheme, or order 0.5 strong Taylor approximation, to

dxt = µ(xt, t)dt + σ(xt, t)dWt

is given by
xt+δ = xt + µδ + σ∆Wt

where ∆Wt = Wt+δ −Wt. If P is the law of {xt, 0 ≤ t ≤ Nδ} and P̃ is the law of the
solution {x̃t, 0 ≤ t ≤ Nδ} to

dx̃t = µ̃(x̃t, t)dt + σ(x̃t, t)dWt

then the likelihood ratio evaluated at {ξt, 0 ≤ t ≤ Nδ}, denoted as dP̃
dP
{ξt}, can be

approximated by

exp

{
1

2δ

N−1∑
n=0

[2 (µ̃nδ − µnδ)
′ (σσ′)−1

∆ξnδ + µ′nδ(σσ′)−1µnδ − µ̃′nδ(σσ′)−1µ̃nδ]

}
. (11)

Note that (11) is both a Riemann sum approximation to the integral given by the
Girsanov theorem and the exact likelihood ration of the numerical approximation. For
higher order Taylor approximations, these two quantities will usually be different. The
exact likelihood ratio of the approximation appears more reasonable to use, though
this would be hard to find for more complex schemes. The exception to this is the
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Milstein scheme (order 1.0 strong Taylor approximation) in the special case where
Wt and xt are in Rm with m = 1, or when the noise is commutative (Kloeden &
Platen 1999, Section 10.3). In the case m = 1, the Milstein scheme is

xt+δ = xt + µδ + σ∆Wt +
1

2
σ

∂σ

∂x

(
(∆Wt)

2 − δ
)
.

2.5 The Particle Kalman Filter (PKF)

The Euler scheme of Section 2.4 with N = δ = 1 corresponds to a local Gaussian
approximation which may be written as

xt|xt−1 ∼ N (A(xt−1), Φ(xt−1)) . (12)

A corresponding local Gaussian observation equation is

yt|xt, xt−1 ∼ N (C(xt−1)xt + D(xt−1), Ψ(xt−1)) . (13)

The PKF consists of applying the recursions in (5) and (6) to the system specified
by (12) and (13). The model given by (12) and (13) is similar to the linearization
employed in the Extended Kalman filter (EKF), the widely used and fairly success-
ful technique of linearizing a nonlinear model and then applying the Kalman filter
(Anderson & Moore 1979). The EKF however is not an exact filter, even for the
linearized model, in the sense that it does not find the true conditional distribution
of the state process. In particular, the EKF estimate of the conditional distribution
is necessarily unimodal. The PKF, on the other hand, gives an exact solution, up to
Monte Carlo error, of the locally Gaussian system of (12) and (13). This system can
be viewed as a discretization of a diffusion process, but also has some interest in its
own right. In phenomenological modeling, e.g. of financial or physical systems, the
underlying continuous time model may be a heuristic that can be discarded once it
has been used to motivate a discrete time model.

The observation equation (13) has the interesting feature that C, D and Ψ can
depend on xt−1. This useful fact arises from (5) and (6), and has the consequence that
the filtering weights are f(yt|xt−1) rather than the usual f(yt|xt). Also, PKF does
not require a numerical integration over xt to find f(yt|xt−1), since the conditional
Gaussian distribution is known. In addition, f(yt|xt) may be poorly behaved, when
some linear combination of components of xt can be observed with little or no error,
whereas f(yt|xt−1) has extra state space variation which may push the distribution
away from singularity. The author is not aware of previous work on methods closely
resembling PKF, although it appears a simple combination of particle filtering and
(extended) Kalman filtering.
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2.6 Parameter Estimation

The likelihood may be calculated via

f(y1,T ) =
T∏

t=1

f(yt|y1,t−1)

using a Monte Carlo approximation, such as CPF or PKF, to the integral

f(yt|y1,t−1) =

∫
f(yt|xt−1)f(xt−1|y1,t−1)dxt−1.

For CPF, f(yt|xt−1) can be estimated by Monte Carlo methods, following the discus-
sion in Section 2.2. For PKF this quantity can be found analytically. Remembering
that there is a parameter, θ, implicit in all the model equations, inference for θ may
be carried out using the usual Bayesian or frequentist methods.

When no resampling is carried out (see Section 2.3), the Monte Carlo variation can
be dealt with by fixing the seed of the random number generator, finding estimates
θ̂1, . . . , θ̂L at different seed values, and combining these estimates.

In the presence of resampling, the branching of the particles depends on θ. One can
simply sample the likelihood with Monte Carlo error at different parameter values or
adopt an importance sampling strategy such as Hürzeler & Künsch (2001). Hürzeler
& Künsch (2001) also propose Monte Carlo EM algorithms, based on solving the
smoothing problem.

Parameter estimation may be carried out by adding θ to the state space (Anderson
& Moore 1979). This method is more successful if θ is a dynamic parameter, i.e.,
θ = θt where θt is itself a diffusion process. If θ does not change with time, but θ = θ0

has some prior distribution f(θ0), then the filtering estimate f(θ|y1,t) is formally a
Bayesian posterior distribution. However, as pointed out in Section 2.3, SMC works
poorly when the conditional process θ̂t with transition density f(θt|θt−1 = θ̂t−1, yt)
is slowly mixing. In the fixed parameter case, θ̂t = θ0 so θ̂t does not “mix” at all.
The θ component of the particles are then stuck at their initial positions, and only
their weights change with time. This problem also arises with other particle based
nonlinear filtering algorithms.

2.7 Extensions

The CPF method applies more or less immediately to certain generalizations of (1)
and (2). If σσ′ is not invertible, or similarly if {Wt} lies in Rd and {xt} lies in Rm

with m 6= d, then one can use a generalized inverse.
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The observation equation (2) can be generalized to

yt = g ({xs, t− 1 ≤ s ≤ t}, ηt, θ, t) ,

where {ηt, t = 1, . . . , T} are independent random variables with density from a known
parametric family. The requirement on g is that one can carry out a local linearization,
as in the example of Section 3, by making a linear, Gaussian approximation to ηt and
yt. The closer this approximation , the more computationally efficient the Monte
Carlo scheme will be. The observation process does not have to be real valued, it
could be categorical or integer valued.

There is some interest in removing the requirement that xt has continuous sample
paths, by allowing dWt in (1) to be the increment process for a Lévy process rather
than Brownian motion (Barndorff-Nielsen, Kosch & Resnick 2001). It is not clear
how useful the diffusion approximations developed here would be in that case.

Another possible extension, similar to that employed in the conditional Gaussian
filter (Anderson & Moore 1979), is that the state evolution equation and observation
equation can depend on previous observations.

3 An Example

For a simple numerical example, we consider a one dimensional nonlinear filtering
problem for which an exact closed form filter exists, namely

dxt = [−αh−1(xt)h
′(h−1(xt)) +

1

2
h′′(h−1(xt))]dt + h′(h−1(xt))dWt (14)

yt = h−1(xt) + ηt, ηt ∼ N(0, τ 2) (15)

where h(·) is an increasing function, and h′(x) = dh/dx. In this section only, h′ does
not represent the transpose of h. If xt = h(zt) then zt and yt form a linear Gaussian
system

dzt = −αztdt + dWt (16)

yt = zt + ηt (17)

The likelihood of {yt, t = 1, . . . , T} can be found using the Kalman filter, if the linear
representation (16) is known. We try to approximate this likelihood using (14) and
(15) with an extended Kalman filter (EKF), particle filter (PF), particle Kalman filter
(PKF) and conditional particle filter (CPF).
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3.1 Linearization for EKF and PKF

The linearization of the SDE

dxt = µ(xt)dt + σ(xt)dWt

around the filter estimate xf
s , s ≤ t, is

dxt =̇ [µ(xf
s ) + µ′(xf

s )(xt − xf
t )]dt + σ(xf

t )dWt

We use this linearization together with an Euler approximation to give a linear Gaus-
sian discrete time system approximating (14) and (15), namely

xt+1 = Atxt + Bt + εt, εt ∼ N [0, Φ2
t ],

yt+1 = Ct+1xt+1 + Dt+1 + ηt+1, ηt+1 ∼ N [0, τ 2].
(18)

The parameters At, Bt, Φt, Ct+1 and Dt+1 are functions of the filtering estimate xf
t ,

the prediction estimate xp
t+1, and also h, h′, h′′, h′′′. The expressions are derived in

Appendix C.

3.2 The Choice of Transformation

Here we consider the transformation

x = h(z) = [(|z|+ 1)2 − 1]sgn(z)

where sgn(z) = {1 if z > 0,−1 if z < 0}. Then

h−1(x) = [
√
|x| − 1]sgn(x)

h′(z) = 2(|z|+ 1)

h′′(z) = 2sgn(z).

This choice of transform leads to long tailed distributions and to a peak in the con-
ditional density f(xt | y1,t) at xt = 0 (see Fig. 1). Using the inverse of this transform
would give short tails and a bimodal stationary distribution for xt.

3.3 Results

Table 1 compares four filters, using the accuracy measure developed in Section 4. It
shows that CPF is the most accurate filter in this situation, followed by PF, KPF
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Figure 1: Prediction distribution for (14) and (15) when the prediction median is
xp

t = 3 (solid line) and xp
t = 0 (dashed line), with τ = 1 for large t.
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Parameter Description Required for Value
Np # of Particles PF, KPF, CPF 200
Nt # of Steps per Observation for PF, CPF 5

Numerical Solution of SDE
Nf # of lags used for filtering (Sec. 2.3) KPF, CPF 3
Nr # of Trials for Importance Resampling CPF 10

τ b× 102
√

V × 102
√

M × 102 A× 102

EKF 1 -3.32 25.1 N/A 25.4
KPF 1 -1.62 15.5 4.67 16.4
PF 1 -0.45 3.26 8.54 9.27

CPF 1 -0.16 3.94 3.99 5.67

EKF 0.25 -8.1 42.7 N/A 43.9
KPF 0.25 -5.3 30.7 2.94 31.8
PF 0.25 -2.52 13.7 21.7 29.8

CPF 0.25 -0.82 9.78 3.56 10.5

Table 1: Bias, b, filter error,
√

V , Monte Carlo error,
√

M, and accuracy, A. Calcu-
lated by simulation for (14) and (15), with parameter settings given above. Simulation
errors are in the last nonzero digit presented.
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Figure 2: A realization from (14) and (15), with T = 100. Transformed observations,
h(yt), are shown as points. The filtering means, estimating the unobserved process
xt, are shown superimposed for EKF, PF, PKF and CPF. The transformed Kalman
filter for estimating zt is also shown. All the methods agree closely on their point
estimates of the unobserved process.

and finally EKF. The filter variance of EKF is large, because the conditional state
distribution is not well approximated by a Gaussian (see Fig. 1). The particle filter,
PF, has a relatively high Monte Carlo error,

√
M , especially when the observation

error, τ , becomes small. On the other hand,
√

M decreases with smaller τ for KPF
and CPF. The filter error,

√
V , which is interpreted as the error after averaging over

many replications of a Monte Carlo filter, is larger for each filter when τ = 0.25.
Techniques introduced in Section 5 for τ = 0 could be used to reduce the loss of
accuracy of CPF for small τ .
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4 Evaluating Filters

In applications, the main goal of using a state space model may be to find a good
point estimate of the state variable conditional on observations. It would clearly by
desirable for a filter to be able to estimate the whole of the conditional distribution
well. For likelihood based (Bayes or frequentist) inference, it is critical to be able
to calculate the likelihood of the observations well. The sequence of conditional log
likelihoods is {λt, t = 1, . . . , T}, where

λt = log f(yt|y1,t−1).

For a filtering algorithm to approximate λt well, the filter essentially has to capture
the whole distribution of xt given y1,t−1. Suppose a filtering algorithm produces an

estimate λ̂t, then we propose evaluating the algorithm by the accuracy, A, defined by

A2 = E[
1

T

T∑
t=1

(λ̂t − λt)
2].

For a stationary model, or at least if λ̂t − λt is stationary, we have

A2 = E[(λ̂t − λt)
2].

This can be broken down by a bias/variance decomposition, as

A2 = b2 + V

where b = E[λ̂t − λt] and V = Var(λ̂t − λt). For a Monte Carlo filter, let

λ̄t = EMC [λ̂t],

where EMC is the Monte Carlo expectation. Then we define

A2 = E[EMC [(λ̂t − λt)
2]].

The bias/variance decomposition is now

A2 = b2 + V + M

where V = Var(λ̄t − λt) is the filter variance, and M = VarMC(λ̂t − λ̄t) is the Monte
Carlo variance.
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4.1 Advantages and Disadvantages of the Accuracy Score

Any evaluation criterion has plus and minus points. Accuracy, since it concerns ability
to approximate the log likelihood, is particularly relevant to inference. It also provides
a natural one dimensional measure, even for a vector valued process. Although an
inaccurate filter might be able to estimate the state process well, or a parameter well,
an accurate filter must capture the whole distribution of the unobserved state process
well. The accuracy of a filter may be hard to evaluate, because λt is not known unless
we already have a perfect filter, with accuracy 0. For the particular nonlinear models
of Section 3, λt is known. In general, λt will be estimated from a filter found to be
accurate on such standard problems.

For parameter estimation, a filter has to estimate the likelihood not only under
the true model but also in a neighborhood around it. It seems reasonable to suppose
that accuracy for a known model is indicative of accuracy for similar models.

4.2 Estimating the Accuracy

Suppose K realizations of a Monte Carlo filter are available, for a stationary state
space model, giving rise to estimated likelihood processes {λ̂tk : t = 1, . . . , T, k =
1, . . . , K}. Then we can write

λ̂tk = λt + b + εt + ηtk,

where b is the bias, E[εt] = E[ηtk] = 0, and εt is independent of ηtk. The filter
variance is V = Var(εt) and the Monte Carlo variance is M = Var(ηtk). A random
effects model (Venables & Ripley 2002) could be used to estimate b,M and V , though
the standard errors will be too low unless one allows for serial correlation over time.
Here we use simpler unbiased estimators,

M̂ =
1

T (K − 1)

∑

t,k

(λ̂tk − λt•)
2

b̂ = λ̄••

V̂ =
1

TK − 1

∑

t,k

(λ̂tk − λ••)2 − M̂

where λ̄t• = (1/K)
∑

k λ̂tk and λ̄•• = (1/T )
∑

t λ̂t•. These estimates are repeated for
many independent realizations of the state space model, to get improved estimates
with standard errors.
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5 When There is No Measurement Error

A special case of (1) and (2), with τ = 0, is

dxt = µ(xt)dt + σ(xt)dWt (19)

yt = Cxt, t = 1, 2, . . . T (20)

this case requires special attention, because the law of xt given y1,t will not have a
density with respect to Lebesgue measure on Rm, but instead on the linear space
{x : Cx = yt} (recalling that xt ∈ Rm, yt ∈ Rn, and supposing that σσ′ is invertible).
The τ = 0 case is interesting in its own right, particularly for the discretely observed
diffusion situation with C = I, the identity matrix. Also, an algorithm that can
handle τ = 0 may be expected to deal with small values of τ . The standard particle
filter (PF), described in Section 1.2, does not work for τ = 0 since f(yt|xt = XP

t ) = 0
with probability 1. The extended Kalman filter (EKF) and particle Kalman filter
(PKF) function as usual. The conditional particle filter (CPF) also works, but some
extra care is required. Let P be the law of {xt|x0}, for t ∈ [0, 1], and P̂ the law of
{xt|x0, Cx1 = y1}, for t ∈ [0, 1]. Then dP/dP̂ cannot be evaluated using Girsanov’s
theorem (Oksendal 1998, Theorem 8.6.5) since Novikov’s condition fails to apply. A
way around this problem is to define Pδ and P̂δ as the laws of xt and x̂t restricted to
t ∈ [0, 1− δ]. Now dPδ/dP̂δ does exist, and we can use

f(y1|x0) = EP̂δ

[
f(y1|x1−δ=x̂1−δ)

dPδ

dP̂δ

{x̂t}
]

. (21)

Fortunately, in CPF this complication does not much effect the Monte Carlo part of
the problem, which is to simulate from a law P̃ close to P̂ and estimate f(y1|x0) using

f(y1|x0) = EP̃δ
[f(y1|x1−δ=x̃1−δ)

dPδ

dP̃δ

]. (22)

In Section 5.1 we see that as long as P̃ is similar to P̂ , the two terms in the expec-
tation of (22) are of order (1/

√
δ)×

√
δ for typical sample paths. A small value of δ

contributes numerical instability while adding relatively little Monte Carlo variation,
since the numerical instabilities cancel. Sections 5.1, 5.2 and 5.3 investigate the choice
of δ.

5.1 Example (Brownian bridge)

Consider the system
dxt = dWt

18



x0 = 0, y1 = x1 = 0,

which is a case of (19) and (20). Then,

dPδ

dP̂δ

(ξ) = exp

{
2

∫ 1−δ

0

ξtdξt

1− t
+

∫ 1−δ

0

ξ2
t

(1− t)2
dt

}
(23)

As δ approaches 0, there are numerical difficulties evaluating the right hand side of
(21), since f(y1 | x1−δ is approximately the density of a N(x1−δ, δ) variable. Thus for
typical sample paths under P̂δ, f(y1|x1−δ=x̃1−δ) is of order 1/

√
δ. Novikov’s condition,

in this example, concerns variables

νδ(x̂) =
1

2

∫ 1−δ

0

x̂2
t

(1− t)2
dt

The condition fails because
EP̂ [eν0 ] = ∞

Conditional on νδ, in this example, dPδ/dP̃δ has distribution

exp{√2νδZ − νδ}

where Z ∼ N(0, 1), so keeping track of how νδ increases as δ approaches 0 may help
to choose a reasonable value of δ.

5.2 Example (Brownian Bridge Continued)

A test problem is to calculate f(y1|x0) for (5.1) and (5.1), by using (22). The correct
answer is 1/

√
2π = 0.3989. x̃t was taken to be an Euler approximation to

dx̂t =
−x̂t

1− t
dt + dWt,

based on discretizing [0, 1] into Nt equal intervals,and taking δ = 1/Nt.
Table 2 shows that the SD of the estimate of f(y1|x0) increases remarkably

slowly as δ becomes small. The importance weights, dPδ/dP̂δ have a very long
tailed distribution for small δ, but the large values of dPδ/dP̂δ match small values
of f(y1|x1−δ = x̂1−δ). Since the observed mean of dPδ/dP̂δ is less than one for small
δ, the extreme tail of the distribution is not even being sampled here, but that is not
affecting the mean of the estimates f̂(y1|x0) of f(y1|x0).
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Nt f̂(y1|x0) dPδ/dP̂δ f(y1|x̂1−δ) νδ

mean 5 0.399 1.00 0.571 0.324
SD 5 0.216 2.63 0.279 0.371

Mean 10 0.399 0.92 0.787 0.640
SD 10 0.235 3.68 0.404 0.673

Mean 25 0.396 0.83 1.238 1.091
SD 25 0.248 8.60 0.640 1.045

Mean 50 0.398 0.68 1.745 1.408
SD 50 0.251 18.0 0.913 1.255

Table 2: Monte Carlo estimates, f̂(y1|x0), of f(y1|x0) using CPF for a Brownian
bridge. Based on a simulation study with sample size 104. Note that δ = 1/Nt here.

Note that in this example f̂(y1|x0) is unbiased, since the numerical solution of
the SDE for xt is exact – the Euler method for Brownian motion gives correct finite
dimensional distributions. This reminds us that the bias is due to the error in the
numerical solution for xt, not in the approximation of x̂t by x̃t. For the Brownian
bridge, x̂t, the Euler solution is not exact.

5.3 Example (A Nonlinear Diffusion)

For a slightly more challenging example, we consider the nonlinear diffusion (14)
observed discretely with no measurement error. Some results are presented in Table 3.
The filter error,

√
V , decreases as Nt increases and as δ = 1 − Ns/Nt decreases.

The Monte Carlo error,
√

M , increases as δ decreases, but decreases proportional to
(Nr)

−1/2 as the number of Monte Carlo replications, Nr, increases.

6 Discussion

There are several potential refinements and extensions of the conditional particle
methods developed in this paper, which should be investigated if/when these methods
are found to make a useful addition to current filtering techniques.

• If f(xt|y1,t) and/or f(yt+1|xt) are sufficiently smooth, as functions of xt, it may
be possible to reduce Monte Carlo variation by applying some smoothing tech-
nique. Stavropoulos & Titterington (2001) investigated this idea for uncondi-
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Nt Ns

√
V × 102

√
M × 102 A× 102

EKF 61 62
CPF 5 4 13.8 4.51 14.6
CPF 10 9 7.62 5.05 9.21
CPF 10 8 10.20 3.76 10.93
CPF 20 19 4.12 5.48 6.90
CPF 20 18 5.07 4.23 6.63
CPF 20 16 8.63 3.33 9.32

Table 3: Comparing EKF with CPF for 14, observed discretely with no measurement
error. The bias, b, was always small and negative, and is not reported. For CPF,
Nr = 200. Setting Nr = 800 results in indistinguishable b and

√
V , and halves

√
M

(not reported). Note that δ = 1 − Ns/Nt. The computational effort is proportional
to Nt × Nr. CPF provides a marked improvement on EKF (which here is simply a
local linearization of the diffusion process), even for modest values of Nt and Nr.

tional particle filters. These modifications must necessarily require more careful
implementation and the selection of smoothing parameters.

• Section 2.3 suggested that more work could be done to develop strategies for
weighting and/or resampling.

• Considerable computational gains may be available for partially linear/Gaussian
systems. This occurs where the state process can be split into two components,
xt = (x

(1)
t , x

(2)
t ), and x

(1)
t given xt−1 and x

(2)
t is conditionally linear and Gaussian.

Investigations of unconditional particle filtering in this situation include (Liu,
Chen & Logvinenko 2001) and (Murphy & Russell 2001).

• A goal of developing more efficient filtering algorithms is to apply them to
increasingly complex models, with large state spaces. One example is the so-
called data assimilation problem, where observations are used to adjust a com-
puter simulation of a large dynamical system. Data assimilation problems,
such as combining geophysical models with observatio stations and sattelites
for weather forecasting, may be written as state space models. Methods sim-
ilar to particle filters have been developed for weather prediction (Evensen &
van Leeuwen 1996), but the high dimension of the state and observation spaces
requires modification of the algorithm.
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Although there is scope for refinement, this paper provides readily applicable al-
gorithms for filtering, smoothing, prediction and likelihood evaluation for a major
class of state space models. The motivation given for the algorithms, and the test
problems solved, suggest that these algorithms may be more effective than available
alternatives.

A Local Linearization - Zeroth Order

Suppose that {xt} is a Brownian motion with drift in Rn,

dxt = µdt + σdWt.

We wish to find the diffusion {x̃t} arising from conditioning {xt} on y = CxT +D+η,
η ∼ N(0, ττ ′), for t ≤ T . Write

dx̃t = µ̃(x̃t, t)dt + σdWt,

using the knowledge that the conditional process is a diffusion with the same infinites-
imal variance as the original diffusion. Let ε = xt+δ − E[xt+δ]∼̇N(0, δσσ′), and note
that

Cov(ε, y) = Cov(ε, Cε)=̇δσσ′C ′,

where =̇ and ∼̇ indicate linearizations for small δ. Then

E[ε|y] =̇ ΣεyΣ
−1
yy (y − E[y])

=̇ δσσ′C ′(C(T − t)σσ′c′ + ττ ′)(y −D − C(xt + (T − t)µ)).

Taking δ ↓ 0 gives

µ̃(x̃t, t) = µ + σσ′C ′(C(T − t)σσ′c′ + ττ ′)(y −D − C(x̃t + (T − t)µ)).

Note that if C and σ are invertible (e.g. if n = 1) and τ = 0 then

dx̃t =
1

τ − t
(C−1(y −D)− x̃t)dt + σdWt.

In this case, x̃t is a Brownian bridge and the drift does not depend on µ.
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B Local Linearization - First Order

Suppose that {xt} is an Ornstein-Uhlenbeck process in Rn,

dxt = α(xt − µ)dt + σdWt.

We wish to find the diffusion {x̃t}, conditional on y = CxT + η, η ∼ N(0, ττ ′), for
t ≤ T . Let ε = xt+δ − E[xt+δ]∼̇N(0, δσσ′)], and note that

Cov(ε, y)=̇Cov(ε, Ceα(T−t)ε)=̇δσσ′eα′(T−t)C ′

Then,

E[xt+δ|y]− E[xt+δ] =̇ ΣεyΣ
−1
yy (y − E[y])

=̇ δσσ′eα′tC ′(CΣtC
′ + ττ ′)−1(y − C[µ + eα(T−t)(xt − µ)])

where

Σt = Var(xT |xt)

= E[

∫ T

t

eα(T−s)σdWs{
∫ T

t

eα(T−s)σdWs}′]

=

∫ T−t

0

eαsσσ′eα′sds

= [eαsMeα′s]T−t
0

= eα(T−t)Meα′(T−t) −M.

for M defined by
αM + Mα′ = σσ′.

Then x̃t has SDE
dx̃t = (α(x̃t − µ) + νt(x̃t))dt + σdWt.

where
νt(xt) = σσ′C ′eαt(CΣtC

′ + ττ ′)−1(y − C[µ + eα(T−t)(xt − µ)]).
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C The Linearization for Section 3.1

First set

µt = −αh−1(xf
t )h

′(h−1(xf
t )) +

1

2
h′′(h−1(xf

t ))

µ′t =
d

dx
[−αh−1(x)h′(h−1(x)) +

1

2
h′′(h−1(x))]|x=xf

t

= −α− αh−1(xf
t )h

′′(h−1(xf
t ))

h′(h−1(xf
t ))

+
h′′′(h−1(xf

t ))

2h′(h−1(xf
t ))

Then,

At = 1 + µ′t
Bt = µt − µ′tx

f
t

Φ2
t = [h′(h−1(xf

t ))]
2

xp
t+1 = Atx

f
t + Bt

h−1(xt+1) = h−1(xp
t+1 + (xt+1 − xp

t ))

=̇ h−1(xp
t+1) + [1/h′(h−1(xp

t+1))](xt+1 − xp
t+1)

Ct+1 = 1/h′(h−1(xp
t+1))

Dt+1 = h−1(xp
t+1)−

xp
t+1

h′(h−1(xp
t+1))
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