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Abstract

In ecological research, panel data is a typical format of data storage. Panel
data is a collection of time series, where each time series corresponds to an
individual or unit in a system. As a result of its high dimension, panel data
analysis presents significant difficulties. Mechanistic modeling is an attractive
approach to ecological modeling, but is difficult to conduct in high-dimensions.
Mechanistic models enable quantitative analysis, which provides a deeper un-
derstanding of the latent process of the dynamic system, and provide inference
and prediction based on panel data. The objective of this study is to showcase
the practicality and advancement of mechanistic model development for ecolog-
ical panel datasets using the panelPOMP structure and panel iterated filtering
(PIF). PIF is used as a probability maximization and parameter estimation tech-
nique. We propose three different ecological models to panel Daphnia data, and
fit each model via maximum likelihood. The best model is selected using Akaike
information criterion (AIC). Our results suggest that alga, a major food source
for Daphnia, plays an important role in Daphnia population dynamics. We il-
lustrate the effectiveness of a panelPOMP framework in modeling the complex
nature of ecological data analysis, emphasizing its capacity to provide meaning-
ful explanations and in-depth understanding of latent processes not captured by
existing data. A discussion on the limitations and interpretations of mechanistic
models in dealing with ecological data is included.
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1 Introduction

Ecological experiments may contain many elements or processes that are unobserv-
able, models that can describe both observable and unobservable processes present
in a dynamic system of great interest. Traditional time series analysis offers lim-
ited explanatory power due to the nonstationary, nonlinear, and stochastic nature
of ecological information. As a mathematical description of the elements forming a
system, mechanistic models can describe the mutual interactions between elements in
the system and their environment (Stalidzans et al., 2020). By accounting for known
biological phenomena, mechanistic models elucidate the actions of hidden yet im-
portant mechanisms (Duarte et al., 2003).Mechanistic modeling involves employing
mathematical models to describe the development and interaction of dynamic sys-
tems, allowing researchers to evaluate the explanatory potential of various conceptual
models and measure the magnitude of pertinent parameters. Mechanistic modeling
has been widely employed in social sciences (Holme and Liljeros, 2015). Improved
computational capabilities now make it more effective. Despite the creation of theo-
retical models for the data, connecting theories with data continues to be a challenging
task. As a result, ecological mechanical modeling cannot solve many of the problems
on a wide scale, but rather, only a limited range of the problems (Duarte et al., 2003).

Panel data, sometimes referred to as longitudinal data, is composed of multiple
time series. Each of these time series, which may be multivariate, contains a series
of observations collected from a separate entity (Bretó et al., 2020). Panel data
is common in ecology due to the nature of experiments in the field; data are often
collected over time for multiple entities that represent various degrees of treatment and
control. Due to the non-linear characteristics of ecological data, the analysis of panel
data entails a non-linear and high-dimensional structure. Such features diminish the
explanatory power of traditional time series analysis and certain Monte Carlo inference
techniques. The goal of this study is to investigate the practicality of employing
mechanistic models on ecological panel data using the panelPOMP structure.

The PanelPOMP approach is a special case of the partially observable Markov
Process (POMP) model to accommodate panel data by constructing a POMP model
for each individual entity. To fit both shared and unit specific parameters, we use
the panel iterated filtering (PIF) algorithm (Bretó et al., 2020), which calibrates
parameters via maximum likelihood. Based on iterated filtering (King et al., 2016),
an algorithm applied to POMP models of a single unit, panel iterated filtering not
only filters within each series but also cycles across the panel to achieve the best
likelihood. This enables the application of mechanistic models to panel data while
preserving dimensionality.

In this research, we will demonstrate the usefulness of the panelPOMP framework
by analyzing the Daphnia panel data collected in the experiment (Searle et al., 2016).
The panel data describes the change in population densities of different species of
Daphnia under different conditions over time. One goal of their study was to interpret
how the presence of invasive Daphnia species (lumholtzi) affects the response of native
Daphnia species (dentifera) to parasites (Searle et al., 2016). In their lab experiment,
they generated standard ecological panel data featuring various independent trials
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under the same experimental conditions, with each resulting in a brief, nonlinear,
and nonstationary time series. The nonlinear nature of the data makes it impractical
to use many conventional time series methods. Utilizing the panelPOMP approach
allows for the analysis of these data and a mechanistic interpretations of the results,
enabling the extraction of the information found in each individual time series.

For a more in-depth examination of the latent processes in the panel data, this
research incorporates two classic ecological models—the Logistic Growth model and
the Lotka-Volterra model—within the panelPOMP framework. After proposing both
models to the Daphnia panel data, parameter estimates are calculated via the PIF
algorithm. The resulting models are subsequently compared in order to discover a
more accurate and appropriate model for the given data. The superior performance of
the Lotka-Volterra model implies that the population density of alga Ankistrodesmus
falcatus (Searle et al., 2016), which is Daphnia’s prey, impacts the dynamics of both
species of Daphnia. It is worth noting that the population density of alga is neither
observable nor recorded in the experiment, making the panelPOMP framework a
desirable approach since it accounts for this important latent processes. By analyzing
Daphnia panel data, we hope to show the limitations and capabilities of mechanistic
models.

2 Data description

2.1 Daphnia-alga Data

Searle and colleagues conducted two experiments to investigate the interaction be-
tween native and invasive Daphnia species and a parasitic fungus called Metschnikowia
bicuspidate (Searle et al., 2016). The first experiment was an individual-level study
that compared the host competence of the two Daphnia species. The second ex-
periment was a mesocosm experiment that examined the community-level species
interaction and the role of population density in disease patterns. The mesocosm ex-
periment involved six different treatments, including both single-species and mixed-
species treatments, with and without parasites. The experiment was conducted in-
doors, with 45 Daphnia added to each 15L high-hardness COMBO media, which is
a defined freshwater culture medium for algae and zooplankton, (Baer and Goulden,
1998), at the start of the four single-species treatments and 10 invasive and 35 host
species added in the treatments of mixed-species. The same treatment will be re-
peated for ten times, and samples were taken every five days for 52 days after the
experiment began. During the experiment, 1.3×106 cells L−1 of algae falcatus will be
added twice a week. Measurements were obtained by sampling one liter of COMBO
solution each week for all ten units. The genus, disease status, generation stage, and
sex of each individual were documented, and the temperature in the lab was kept con-
stant at 23.27℃ (SE ∓ 0.2) with a 16L:8D photoperiod and all the other conditions
remained the same for all units during the experiment time.

One question of interest in this experiment is the interplay between the Daph-
nia species (Daphnia dentifera and Daphnia lumholtzi) and their surroundings in the
absence of parasites. In order to address this question, we analyze a panel data con-
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sisting of ten independent time series representing the population density of dentifera
adults. These observations were gathered simultaneously at ten time points, as shown
in Figure 1 and 2, and offer the opportunity to evaluate the relationship between alga
and Daphnia, and compare mechanistic models that describe that relationship.
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Figure 1: Data visualization for Daphnia dentifera: Ten replications of Daphnia pop-
ulation density panel
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Figure 2: Data visualization for Daphnia lumniza: Ten replications of Daphnia pop-
ulation density panel

3 Methodology

3.1 Partially Observed Markov Processes

Frequently, we lack a comprehensive understanding of the underlying mechanisms
that drive the evolution of a natural system. For example, the precise number of
individuals who are exposed to a disease or the density of alga at any given time
is typically unknown. To address these issues of missing information, we can utilize
partially observed Markov (POMP) models. These models describe how the latent
states of a system change over time and how measurements on the system are obtained.

With the random variables Y0:N which are the observable states process, the mea-
surement model is given by fYn|Xn

(yn|xn; θ); the observed data y0:N are assumed
to be random draws from this density. We denote the latent states as the random
variable X0:N , where X0 represents the initial state of the latent process. The evo-
lution of the latent state is described as samples from a one-step transition density
fX|Xn−1

(xn|xn−1). We assume that at each time point n ∈ 1 : N , Yn depends only
upon the latent process Xn n, and is conditionally independent of Yn−1 and Xn−1.

3.2 Likelihood of models and PIF

In statistical inference, the model likelihood frequently serves as the basis for estimat-
ing parameters and selecting models. Considering a model parameterized by vector
θ within the m-dimensional parameter space Θm, the likelihood function represents
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the combined probability density of the dataset, y1:N , at θ:

L(θ) = fY1:N
(y1:N ; θ) (1)

Because elements of θ are typically unknown, estimates of θ are obtained by maxi-
mizing the likelihood function. Any parameter vector that maximizes the likelihood
function is called a maximum likelihood estimate, and is denoted θ̂.

An ecological model’s effectiveness in tracking disease spread hinges on its capabil-
ity to predict cases or incidence rates. This capability is inherently tied to the model’s
ability to accurately describe the temporal changes in latent states. As a result, we
encounter two interrelated issues: finding plausible values of Xn at time n based on
y1:n, and pinpointing parameter values, θ̂, that maximize the model likelihood. These
processes are commonly referred to as the filtering process and the inference process,
respectively.

The nonlinear nature of arbitrary POMP models often makes analytical evalua-
tion of the likelihood function and transition densities impossible. Simulation based
methods such as the particle filter (Arulampalam et al., 2002) help address this issue
by enabling the calculation of likelihood values while only requiring the ability to
simulate from the model and evaluate the measurement model.

To implement the particle filter, we start by initializing M particles at time t0,
where {Xm

0 ;m ∈ 1 : M}. Then, for every time step n ∈ 1 : N , we advance the
each particle by simulating from the transition density, resulting in a set of par-
ticles that represents the prediction distribution at time n, denoted as Xm,P

n ∼
fXn|Xn−1

(·|Xm
n−1; θ), for m ∈ 1 : M .Next, we assign weights to the particles based on

the measurement density to obtain an ensemble that represents the filtering distribu-
tion at time n, where the new weight is calculated via wn,m = fYn|Xn

(yn|Xm,P
n ; θ).

Finally, we redraw particles based on their weights to generate a new set of particles
that represents the filtering distribution, denoted as Xm,F

n .If the number of particles
is large, we can approximate the likelihood using equations (1) and (4):

L(θ) = fY1:n
(y1:N ; θ) (2)

=

N∏
n=1

fYn|Y1:n−1
(yn|yn−1; θ) (3)

=
N∏

n=1

fYn|Xn
(yn|xn; θ) (4)

≈
N∏

n=1

1

M

M∑
m=1

fYn|Xn
(yn|xm

n ) (5)

This algorithm offers a straightforward approach to estimate the likelihood and the
latent state at a specific time based on the available observations (Ionides et al., 2015).

3.3 PanelPomp Framework

In a panel data set containing K independent time series, K entities are represented by
the symbols u1, u2, . . . , uK , with Nk periodic observations collected for each unit. A
stochastic observable process, denoted as yk,1, ..., yk,N , represents measurements taken
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on the system. PanelPOMP is a special case of the POMP model, where the latent and
observable processes can be factored into independent entities (Bretó et al., 2020), and
entails developing a POMP model for each entity. We use the PanelPOMP structure
to describe three ecological models for a single-species experimental container without
parasites.

4 Models

In this section, we describe three models that are used to fit the Daphnia panel
data. The first two provide only simple representations of the system and are used to
benchmark the results of the third model.

4.1 Logistic Model

The simplest of the models is the Logistic Model, where the Daphnia Population
Density at time t is modeled using the state variable S(t), and the population changes
according to the following equations:

dS(t) = (r + ζ)S(t)

(
1− S(t)

K

)
· dt− δS(t) · dt (6)

ζ ∼ N (0, σG) (7)

This model contains one state variable Daphnia population density(S) and three pa-
rameters: r,K and σG. r represents the growth rate of Daphnia; K is the carrying
capacity of this ecosystem in terms of density of Daphnia; and δ denotes the sampling
rate in the experiment. In order to minimize the dimension of parameters, we fixed
the sample rate δ as a constant equal 0.013 (Searle et al., 2016). ζ is a noise term
added to population growth to allow for random variation in the dynamic. In this
case, we assure ζ follows a Normal distribution with 0 mean and a standard deviation
of σG.

The logistic model is a well-known ecological model that is commonly used to
describe the population growth of a species under limited conditions, such as space or
food availability (Lomnicki, 1980). Given that the population growth curve appears
to follow a similar pattern to the logistic model, we attempt to fit the data to this
model. As the population density (S) approaches the carrying capacity (K), the rate
of population growth decreases and becomes zero when S equals K. If S exceeds
K, the population will decline. Moreover, as S increases, the noise in the data also
increases, which will be accounted for by the model.

This model implicitly assumes that the population has sufficient food, and that the
limiting factor for growth is the space available for Daphnia. Therefore if the model
fits the data accurately, it would imply that the population has sufficient food and
that the limiting factor is the space available for Daphnia. However, if the model does
not fit the data well, then we should consider the inclusion of alga into the model, as
algae are a major food source for Daphnia, and a potentially significant component
of the population dynamics.
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4.2 Lotka-Volterra model with enough food supply

The next model includes a new latent state F that models the native supply of algae
in each unit (Yang, 2018):

dF (t) = αF (t)

(
1− F (t)

kf

)
· dt+ F (t)

(
1− F (t)

kf

)
dζF − βF (t)S(t) · dt (8)

dS(t) = θS(t)F (t) · dt+ S(t)F (t)dζS − γS(t) · dt− δS(t) · dt (9)

dζF ∼ N
(
0, σ2

F · dt
)

(10)

dζS ∼ N
(
0, σ2

S · dt
)

(11)

This model includes eight parameters for each unit: γ, α, σF , σS , θ, β, δ and kf . α

represents the rate of growth of algae; kf shows the carrying capacity of algae in each
bucket; β is the consumption rate of algae by certain species of Daphnia; θ shows the
rate of growth of Daphnia with certain type of food; and γ is the rate of death of
certain species of Daphnia. Similar to the logistic model, we treat δ as a constant equal
to 0.013, according to the experimental settings (Searle et al., 2016). dζF and dζS are
Brownian noise terms of algae (F) growth and Daphnia (S) growth in order to show
randomness of the dynamic system. They are generated from a normal distribution
with 0 mean, and σ2

F ·dt, σ2
S ·dt to be the variance respectively. Whenever the density

of algae equals zero, we reset the density of alga back to 108cells/L−1 as a way to
ensure the adequacy of food.

Using the Lotka-Volterra model with enough food supply, we investigate how the
population dynamics of Daphnia are influenced by the availability of sufficient algae.
If this model provides a better description of the observed data than the Logistic
model, it is reasonable to conclude that the density of algae plays a significant role
in Daphnia population dynamics. On the other hand, if the model does not fit the
data well, it’s possible that the native algae dynamics alone may not be an adequate
description of the data. Therefore, because some food management was conducted
in each unit during the experiment, it may be necessary to test the Lotka-Volterra
model with food supply management, as is described in the next model.

4.3 Lotka-Volterra model with food supply management

In the third model, we denote the density of alga as F (105 cells per liter), and density
of Daphnia as S (individuals per liter), and total amount of Daphnia that is sampled
out from the bucket as M(individuals per liter). The equations that describe the
dynamics for this model are given below:

dF (t) = αF (t)

(
1− F (t)

kf

)
· dt+ F (t) · dζF − βF (t)S(t) · dt− δF (t) · dt+ µ · dt

(12)

dS(t) = θS(t)F (t) · dt+ S(t)dζS − γS(t) · dt− δS(t) · dt (13)

dζF ∼ N
(
0, σ2

F · dt
)

(14)

dζS ∼ N
(
0, σ2

S · dt
)

(15)

dM = δS(t) · dt (16)
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In this model, we set the initial condition to be M = 0, S = 3 and F = 16.667

by Searles et al. For ease of understanding the model equations, we separate the
differential equations (12)-(16) into distinct parts that each correspond to meaningful
ecological phenomena:

Alga The change of the density of alga can be viewed as

dFbirth(t) = αF (t)

(
1− F (t)

kf

)
dt+ F (t)dζF (17)

dFcons(t) = βF (t)S(t)dt (18)

dFspl(t) = δF (t)dt (19)

dFrefill(t) = µdt (20)

dF (t) = dFbirth(t)− dFcons(t)− dFspl(t) + dFrefill(t) (21)

In these equations, α represents the growth rate; kf is the carrying capacity; ζF is
the noise term; and β represents the rate at which alga are consumed. All of these
are treated as unknown parameters. δ and µ are fixed parameters with δ = 0.013

and µ = 0.37, which model the food supply rate. We split the change of alga density
(dF) into four parts: equation (17) represents the change of population due to the
birth of alga and Brownian noise term; equation (18) is the amount of alga that is
consumed by Daphnia; equations (19) and (20) indicate that change of alga density
due to the process of alga refill and sampling. Together, these four equations explain
the processes and causes of the changes in alga population density.

Daphnia The change of the density of Daphnia can be viewed as

dSgrow(t) = θS(t)F (t)dt+ S(t)dζS (22)

dSdeath(t) = γS(t)dt (23)

dSspl(t) = δS(t)dt (24)

dS(t) = Sgrow(t)− Sdeath(t)− Sspl(t) (25)

In these equations, θ is the growth rate, ζS is the noise term, and γ is the death rate,
all of which are unknown parameters. δ is a fixed parameter with δ = 0.013. We split
the change of Daphnia density (dS) into three parts. The equation (22) represents the
change of population due to the birth of Daphnia and Brownian noise terms. While
the equation (23) shows the amount of alga that is consumed by Daphnia, which
will make the density decrease. The equation (24) indicates that change of Daphnia
density due to the process of sampling. These three equations explain the processes
and causes of the changes in Daphnia population density.

This model includes 9 parameters: γ, α, σF , σS , θ, β, δ, µ and kf . Among those pa-
rameters, α represents the rate of growth of algae. kf shows the carrying capacity of
algae in each bucket. β is the consumption rate of algae by certain species of Daphnia,
θ shows the rate of growth of Daphnia with certain types of food and γ is the rate of
death of certain species of Daphnia. Similar to the previous Lotka-Volterra model, we
treat δ as a constant equal to 0.013 and µ = 0.37 as a constant that implies the food
refilling rate according to the experimental settings (Searle et al., 2016). ζF and ζS
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are Brownian noise terms, which show the randomness of the dynamic system. They
are induced by a normal distribution with 0 mean,and σ2

F ·dt, σ2
S ·dt to be variance re-

spectively. Unlike the previous model, this model restricts the total food supply, more
closely mimicking the experimental setting. One explanation for the observed precip-
itous decline in Daphnia population density is that there was a meaningful decline to
the food supply throughout the experiment. Therefore the model equations permit
both a natural decline in food levels and an increase of Daphnia food corresponding
to the food supply rate of the experiment. Based on the experimental manipulations,
we treated the food supply rate as a constant µ = 0.37 · 105 cells per day.

Using this model, we can investigate how the population dynamics of Daphnia
are influenced by the density of algae with the condition that food levels without any
food management may not be sufficient to describe Daphnia population dynamics. If
the data are better explained using this model than the alternative hypotheses, it can
be concluded that the density of algae plays a significant role in Daphnia population
dynamics and the lack of food is potentially the reason of the precipitous decline
in Daphnia population, as other factors may not obviously affect this treatment.
Alternatively, if the model does not fit the data well, it’s possible that the alga may
not be the main reason that led to the change of population of Daphnia, which means
other possible factors that may affect the population density of Daphnia should be
considered.

4.4 Measurement and Initial condition

Important to the POMP framework is the description of how observations on the
system are obtained, often referred to as the measurement model. The sampling
process illustrates the potential for a difference between the true population density
of Daphnia and that observed in the experiment due to partial sampling. As research
group (Searle et al., 2016) described, on every sampling occasion, one liter of specimen
is extracted from a 15 liter mixture post agitation, and the sampling rate δ is set to
0.013. Due to the constraint that both Daphnia and algae densities must be non-
negative values, the sampling procedure was assumed to be a binomial distribution
with the probability of success (p) equivalent to the sampling rate (δ) and the total
count (n) as S/δ for both logistic growth models and Lotka-Volterra models. For
logistic growth models, the assessment framework can be summarized as:

F ∼ binomial(n = S/δ, p = δ), δ = 0.013 (26)

S represents the actual population concentration, and the integer (1/δ * S) sig-
nifies the estimated count of adult Daphnia in the 15L medium. F symbolizes the
unobservable specimen resulting from the hidden population density. Given that al-
gae samples are not accounted for in the Lotka-Volterra POMP model, we propose
two different measurement models for the Daphnia population. The first is the same
measurement model as the logistic growth model. Alternatively, we can view the
process of sampling as a Poisson process, where the rate λ = S · δ represents the aver-
age number of Daphnia per liter per sampling time. Hence, two possible assessment

10



frameworks are:

F ∼ binomial(n = S/δ, p = δ), δ = 0.013 (27)

F ∼ Poisson(λ = S × δ) (28)

5 Results

In the PanelPOMP framework, one must decide whether or not each parameter should
be unit specific, or shared across units. These decisions greatly affect the number of
parameters fitted for each model. For example, with ten units in the model, adding a
shared parameter increases the model’s dimension by one, and adding a unit specific
parameter will increase the dimension by ten. An increase in parameter dimension
increases the model’s ability to quantitatively describe the observed data, but leads to
the possibility of over-fitting, resulting in a model with poor explanatory and predic-
tive power. In order to find a balance between fitting accuracy and simplicity when
selecting models, we employed the Akaike information criterion (AIC) as a criteria
to compare models while adjusting for dimension. We estimate model parameters
via maximum likelihood using the panel iterated filtering (Bretó et al., 2020) and
calculated AIC for all models. Table 5 suggests that the Lotka-Volterra model that
treats σS as a unit specific parameter and all other parameters shared results in the
best AIC of 970.62. The lowest AIC of all of the considered models was the logistic
growth model with only k as a unit specific parameter; this model had an AIC value
of 2543.04. These results suggest that the new Lotka-Volterra model outperforms
both benchmark models in fitting Daphnia panel data, with an AIC advantage of
1292.89 units over the best alternative model. This finding implies that the hidden
alga process influences Daphnia population dynamics. Daphnia population density
fluctuations primarily stem from the interplay between algae and Daphnia. Addition-
ally, significant noise is generated in the Daphnia population throughout the process
within these containers.

The results of independent likelihood maximization searches are included in the
appendix. These results demonstrate that among the 250 independent searches, the
vast majority of them are approaching a certain upper bound. Due to the theoret-
ical properties of the PIF algorithm that suggest that any single iteration should
approach a region near the MLE with sufficient number of particles and iterations,
this is suggestive that the independent replicates are in fact converging near the MLE.
Therefore we believe that we have conducted a sufficient search to find a set of model
parameters that maximize the likelihood. Furthermore, the mean value of standard
error of the estimated log-likelihoods is 0.114, with over 90 percent having standard
error less than 1, which is small enough to provide additional evidence that proper
optimization of model parameters has been achieved.

Parameter estimates and their units are shown in Tables 5, 6, and 7 in the ap-
pendix. σS vary across the panel while other parameters are constant across units. σS

is the main constraints of Daphnia population dynamics, where σS is the noise gener-
ated in the population of Daphnia. The noise can potentially be generated due to the
sampling process. Their variation in different units is possibly caused by the different
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density of algae’s food: higher σS indicates one unit has significant noise during the
process. This hypothesis is plausible because the level of noise in an experiment is
difficult to control in practice. By affecting the sampling process of Daphnia, the re-
searchers indirectly change the data we used to interpret the performance of Daphnia,
resulting in different dynamics across the panel.

5.1 Simluations

For the model and parameters swarm that result in the best AIC, we ran 20 simula-
tions on each unit of the model (Figure 3 and 4). These figures demonstrate that the
majority of the simulations closely resemble the observed data, suggesting the obser-
vations are a plausible realization of the fitted model. The estimated parameters that
were used for this simulation are given in Tables 1 and 2.
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Figure 3: Simulations of the Lotka-Volterra model with σS to be unit specific and all
the other parameters to be shared on each unit of Daphnia dentifera panel data.
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Figure 4: Simulations of the Lotka-Volterra model with σS to be unit specific and all
the other parameters to be shared on each unit of Daphnia lumholtzi panel data.

6 Discussion

Seales’s research group (Searle et al., 2016) utilized a logistic growth model to depict
the population dynamics of Daphnia in the absence of parasites. However, our findings
suggest that the density of Daphnia is influenced to some extent by algae, which
affects its growth rate. Consequently, it appears that the fluctuations in the density of
Daphnia can be attributed to the dynamics of algae, even in the presence of parasites.
Further investigation through the application of a Lotka-Volterra model on single-
species with parasite treatments and mixed-species treatments may provide additional
insights into the impact of algae and parasites on Daphnia, given enough time.

There is a concern with the model fitting since, during simulations, the density
of Daphnia occasionally exhibits exponential growth. This may be due to the lack
of a parameter restricting the upper limit of Daphnia’s density, which is a potential
avenue to enhance the model’s accuracy in future iterations. However, I chose not
to incorporate this parameter into the current model as it maintains both simplicity
and relevance. Results indicate that σS could be the probable source of disparities in
data among buckets. As this parameter is not involved in the density change of algae,
it is plausible that this noise arises from some ecological process specific to Daphnia,
which requires further scrutiny and discussion in future research.

We have demonstrated the applicability of a panelPOMP model for mechanistic
modeling in ecological studies using Daphnia panel data. We used panelPOMP to
successfully explain the large relationship between Daphnia population density and
its food in Searle et al.’s experiment. It is worth noting that we only had 100 data
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points to explain this phenomenon. In the framework of panelPOMP, we used PIF
to reduce the dimensionality of the model quickly, which means that this method can
be utilized for the analysis of other high-dimensional data and has the advantage of
rapid dimensionality reduction. This approach complements the disadvantages of the
Mechanistic model and potentially allows ecologists to try to solve more data analysis
problems using the Mechanistic model.

The R package panelPOMP, which is based on this model and PIF algorithm
(Bretó et al., 2020), enables access to latent state variables such as algae, offering a
quantitative approach that facilitates parameter estimation, hypothesis testing, and
the comparison of different models with or without their influence on the dynamic
system. This approach provides scientists with better insight into the contribution of
each factor to the whole system and the ability to predict its future state. Further-
more, the package allows for simulations, which serve as a valuable tool for testing
the goodness-of-fit of chosen models and parameters. Overall, mechanistic modeling
under a panelPOMP framework can yield more information from limited ecological
data, increasing the efficiency and accuracy of ecological experiments while reducing
cost and resource requirements.
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8 Appendix

Tables for each simulations and calculations

Specific parameters dimension max log-likelihood AIC

K 12 -1259.52 2543.04
K + σS 21 -1257.07 2556.13

all specific 3 -1328.33 2662.67
σS 12 -1366.01 2756.03

r + K 21 -2011.21 4065.42
r + σS 21 -2111.21 4264.42

r 12 -2138.59 4301.19

Table 1: This table includes logistic growth models fitted to Daphnia dentifera with
different choices of parameters to be either unit specific or shared

Specific parameters dimension max log-likelihood AIC

α 16 -1122.15 2276.30
β 16 -1166.73 2366.80
γ 16 -1167.40 2365.46
θ 16 -1176.68 2385.35
σS 16 -1249.57 2531.15
σF 16 -1242.07 2516.14
kf 16 -1157.30 2346.60

α, kf 25 -1106.76 2263.51
α, β, kf 34 -1103.92 2275.85
β, kf 25 -1114.36 2278.73

α, γ, kf 34 -1112.00 2292.00
θ, kf 25 -1131.60 2313.19
α, θ 25 -1131.60 2313.19

all specific 70 -1099.39 2338.78

Table 2: This table includes Lotka-Volterra model with enough food supply fitted to
Daphnia dentifera with different choices of parameters to be either unit specific or
shared
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Specific parameters dimension max log-likelihood AIC

σS 16 -469.31 970.62
σS , θ 25 -461.31 972.62
σS , β 25 -463.32 976.64
σS , α 25 -463.48 976.96
σS , γ 25 -465.65 981.31
σS , σF 25 -466.95 983.9
σS , kf 25 -465.71 980.44
α, σF 25 -483.72 1017.41
α, β 25 -493.94 1037.88
α 16 -501.31 1034.62
β, γ 25 -503.31 1056.63
γ, σF 25 -503.51 1057.03
β, σF 25 -503.74 1057.48
σF 16 -513.73 1059.46
α, θ 25 -505.64 1061.31
θ, γ 25 -506.72 1063.45
α, γ 25 -506.81 1063.61
β 16 -516.31 1064.62

kf , σF 25 -507.77 1065.55
θ, β 25 -511.95 1073.91
θ 16 -521.31 1074.62

θ, β 25 -511.95 1073.91
α, θ 25 -512.55 1075.10
kf 16 -523.73 1079.46

α, kf 25 -515.36 1080.72
γ, kf 25 -515.36 1080.73
θ, kf 25 -519.21 1088.47
β, kf 25 -520.04 1090.09

Table 3: This table includes the Lotka-Volterra models with food management fitted
to Daphnia dentifra with different choices of parameters to be either unit specific or
shared
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Specific parameters dimension max log-likelihood AIC

σS 16 -368.18 768.38
β 16 -369.17 770.34
γ 16 -369.75 771.51

α, β 25 -361.04 772.08
α 16 -370.37 772.74

σS , β 25 -362.59 775.18
β, σF 25 -362.99 775.98
θ 16 -372.28 776.56
kf 16 -372.37 776.74

σS , α 25 -363.71 777.42
σF 16 -373.28 778.56

α, σF 25 -365.35 780.71
σS , σF 25 -366.04 782.08
σS , kf 25 -366.56 783.12
σS , θ 25 -366.67 783.34
σS , γ 25 -366.81 783.62
θ, β 25 -369.31 788.62
α, θ 25 -370.24 790.48
α, kf 25 -371.13 792.26
α, γ 25 -371.15 792.31

kf , σF 25 -372.81 795.62
θ, σF 25 -373.11 796.22
γ, σF 25 -372.57 795.14
β, γ 25 -373.19 796.38
β, kf 25 -373.48 796.96
θ, γ 25 -373.75 797.51
θ, kf 25 -374.37 798.74
γ, kf 25 -375.56 801.12

Table 4: This table includes the Lotka-Volterra models with food management fitted
to Daphnia lumniza with different choices of parameters to be either unit specific or
shared
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Figure 5: This figure describes the change of the corresponding loglikelihood in the
process of iteration under different particles, we only chose the graph after the twen-
tieth iteration, in order to be able to see more clearly that they are close to the upper
bound.

unit α · 10 β · 104 γ · 10 θ · 10 kf σS · 10 σF · 10

u1 4.32 8.15 3.61 4.08 0.25 4.3 0.09
u2 4.32 8.15 3.61 4.08 0.25 5.31 0.09
u3 4.32 8.15 3.61 4.08 0.25 0.39 0.09
u4 4.32 8.15 3.61 4.08 0.25 2.37 0.09
u5 4.32 8.15 3.61 4.08 0.25 5.49 0.09
u6 4.32 8.15 3.61 4.08 0.25 1.37 0.09
u7 4.32 8.15 3.61 4.08 0.25 5.39 0.09
u8 4.32 8.15 3.61 4.08 0.25 3.9 0.09
u9 4.32 8.15 3.61 4.08 0.25 1.38 0.09
u10 4.32 8.15 3.61 4.08 0.25 2.28 0.09

Table 5: This table includes parameter swarm that gets best AIC with Lotka-Volterra
models fitted on Daphnia dentifera panel data

unit α · 10 β · 104 γ θ · 10 kf σS · 10 σF · 10

u1 4.44 2.43 9.58 3.31 3.25 5.8 2.36
u2 4.44 2.43 9.58 3.31 3.25 6.55 2.36
u3 4.44 2.43 9.58 3.31 3.25 3.16 2.36
u4 4.44 2.43 9.58 3.31 3.25 2.04 2.36
u5 4.44 2.43 9.58 3.31 3.25 3.14 2.36
u6 4.44 2.43 9.58 3.31 3.25 1.6 2.36
u7 4.44 2.43 9.58 3.31 3.25 4.66 2.36
u8 4.44 2.43 9.58 3.31 3.25 4.54 2.36
u9 4.44 2.43 9.58 3.31 3.25 1.85 2.36
u10 4.44 2.43 9.58 3.31 3.25 3.9 2.36

Table 6: This table includes parameter swarm that gets best AIC with Lotka-Volterra
models fitted on Daphnia lumholtzi panel data.
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parameter unit

α day−1

β L · individual−1 · day−1

γ (6hr)
−1

θ L ·
(
105cells

)−1 · day−1

kf 105cells · L
σS day−1

σF day−1

Table 7: This table shows the units of the parameters
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