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1 Introduction

The ongoing advancement of subscription services for audio media (YouTube Music,
Spotify, Google Music etc.) necessitates the automatic recommendation of different
audio contents. And with the ever increasing sophistication of the recommendation
algorithms, comes the need for automated Music Information Retrieval (MIR). For
this paper, we will deal with the musical classification side of MIR.

The literature on musical classification has been focused more on the spec-
trum analysis of a given audio file, with notable mainstream classifiers using the spec-
tral analysis technique called the MFCC, or the Mel-Frequency Cepstral Coefficients,
which is a sort of inverse of the Fourier Analysis [7]. However, these spectral analysis
techniques are based on low level information of the sound spectrum, which makes it
inapplicable in many situations. For this project, we have decided to use symbolic
representations of audio, namely Musical Instrument Digital Interface (MIDI) files, to
look at the mid-level information of the music, such as the chord structure, meter, key,
rhythmic make up of the piece, to classify the music. This way, the classifier will have
knowledge of the piece based in music theory, and not just the frequency spectrum.

More specifically, this paper would tackle a more niche aspect of the problem:
the classification of Classical and Romantic music using only higher level content.
These two eras of music are known for their ambiguous boundaries. If a average
musically untrained person were to listen to the songs of The Beatles and sonatas of
Mozart, they would easily be able to differentiate between the two, and guess that
the sonatas is classical music, while the songs of The Beatles are some forms of early
pop music. However, even for a relatively well trained classical musician, they would
still have a difficult time correctly categorizing an early symphony by Mendelssohn, a
Romantic period composer, and a late one by Beethoven, a Classical period composer,
especially by looking at the chords only. Indeed, there are those who would question
the rigor and validity of the Classical-Romantic dichotomy, and a good number of
musicologists would argue that Beethoven was not actually a Classical period composer
[12]. Nonetheless, we will tackle this problem by exploring classification techniques in
the field of conventional machine learning, with a focus on Support Vector Machines
(SVMs), and deep learning, emphasizing on the Long Short Term Memory (LSTM)
networks specifically.

To this end, we will use MATLAB’s MIDI-Tools package to analyse and
provide the algorithm with the aforementioned mid-level musical data [5]. There are
already implemented functions that could find both the meter and the key of the piece
in the package; however, the harmonic components of the analysis will provide more
of a challenge.

2 Background Information

In this paper, we will focus on the use of the Support Vector Machine and the Long-
Short Term Memory neural network. Therefore, it would likely be beneficial to clarify
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the workings of the models in this section

2.1 Support Vector Machines

Support Vector Machines (SVMs) were originally developed by Cortes and Vapnick
[4] in 1995 for binary classification, in order to address the problem of outliers and
overlapping points in the training data set. On a high level, the SVM aims to find an
optimal separating hyperplane between two classes by the maximizing of the margin
between the closes points in classes as illustrated in Fig.1. The points lying on the
margin line are called the support vectors, hence the name of this model. [4] [16]
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Figure 1: Support Vector Machine: Margins [16]
Here, a hyperplane F' is defined to be:

F={z:0+a"B =0}

where @ is a point in the feature space, 3y is the intercept of the line, and 3 is a
vector normal to the plane represented by F. Using Cortes and Vapnick’s original
formulation, the optimal hyperplane for classification is one that maximizes:

max m subject to ——w;(fy + ' B) > m

1
Bo,3 18]

Solving this optimization problem results in the hyperplane f (x) expressed as a sum
of Lagrange Multipliers,

flo)=Fo+a"B=F0+ Y dwile, xs)
icS

where S is the set of support vectors.



However, it is important to note that one of the greatly appreciated features
of the SVM, is its ability to transform the input features via a kernel function when a
hyperplane could not effectively classify the data in the original feature space. Without
this characteristic, the SVM would do little better than a linear classifier. Instead of
the inner product, the square of the Euclidean distance, we could replace it with a
kernel function K that essentially transforms the feature set into a higher dimension.
We get

f(x) = Bo+ Z ayi K (x, ;).

€S

The only requirement here is that the K has to be symmetric, and positive
semi-definite, since it is replacing the inner product. [16]

2.2 Long Short Term Memory Neural Networks

Although various neural networks could be chosen for our task of the classification of
a chord progression, i.e. a time series, we have chosen the Long—Short-Term Memory
(LSTM) networks for its property of being able to retain “memory” of the previous
elements in the time series, and not only consider the element that came before the
current one. This property of the LSTM network is especially valuable for the analysis
of a time series like a chord progression, whose dependencies could span several chords.

A single LSTM layer at time t is defined via the following sets of equations re-
formulated by Andrew Ng based on Hochreiter and Schmidhuber’s original formulation
in 1997 [8]:

6<t> —_ tanh(Wc[a<t_1>, J}<t>] + bc)
[, =oc(W,[a~"", 2" +b,)
Ff = O’(Wf[a<t_l>, <t -+ bf)

Fo — U(Wo[a<t_1>, ZL’<t> + bo)
C<t> — Pu * 5<t> + Ff * C<t71>

a~*” =T, *tanh <>

As shown in Fig.2, ¢<'>, is the input passed in from the previous hidden layer, a<*> is
the variable that records the “state” of the network, and thereby retaining “memory”
of the previous elements, and <" are the inputs to the current neuron, while the
I'y,I'y,I', are the update, forget and output gates respectively, with W being the
weights matrix, and b the biases.

Noting the complexity of musical chord progressions, we will also use a bi-
directional LSTM network, which does not only consider the dependencies of the
previous chords, but also the chords ahead. Illustrated in Fig.3, a bidirectional LSTM
network is a stacking of two conventional LSTM networks, one forward and the other
backwards. Since the predicted y variable is influenced by both the hidden layers that
came before and after it, it could effectively take into consideration the dependencies
of both directions.



<t=1>
Cc

Figure 3: Illustration of a Bidirectinal LSTM network [2]

3 Data

All of the data used in this paper came from the ELVIS Database of the ELVIS Project,
and are divided into Romantic and Classical music based on musicological conventions.
The files used are all direct representation of the score in the from of MIDI files, with
each movement of the piece being a separate file. As for the assortment of pieces in
each category, we have 394 pieces for the Romantic composers including Tchaikovsky,
Chopin, Mendelssohn, Liszt and Grieg. While on the other hand, we have 360 pieces
form the Classical era, including Haydn, Beethoven, Schubert, Mozart. Due to the
availability in the Elvis database, Chopin occupies a majority in the Romantic pieces,
and the Haydn for the Classical pieces.

3.1 Exploration

For the sake of interpretability, we use the chord labels that would later be better
defined and explained in the “Chord Recognition” section of the paper to perform
a simple exploration of the data available. After the chord recognition, the chordal
information of each piece is encoded as ratios between each chord type and the total
number of chords to the data frame, along with the key, meter and the modality of
each piece, resulting in a 754 by 18 data frame of higher-level musical information to
be used for model training. However, instead of blindly training models, it might be
beneficial to examine the generated data first.
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Scatter Plot for Major Chords
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Figure 4: Scatter Plot Matrix for Major Pieces

First, by looking at the scatter plot matrix for the major pieces only in Fig.4,
we can see that there is, albeit somewhat weak, a visible correlation between the chords
and the class of the piece and the ratio of the chords. This is correlation seems to
especially prominent for the V, ND, and the I chord. Where Romantic pieces seems
to have, in general, a less frequent use of the I and V chord, while having a higher
ratio of ND chords. This falls inline with the general knowledge of music theory and
musicology, where it is generally understood, that music of the later genre tend to push
the boundary of diatonic composition through the use of chromaticisms, increasingly
frequent key-changes and transpositions, and the use of whole-tone scales, all of which
are likely to lead to the classification of a chord to be ND by the chord classification
method used in this paper.

This observation, however, does not seem to hold for the minor case. As could
be seen in scatter plot matrix of the minor chord shown in Fig.5, where the correlation
between the ratios of the chords and class does not seem to be as strong, so much
so that it is hardly visible from the pair-wise comparison of the scatter plots by the
naked eye. On the other hand, we do see significantly more data points of Romantic
pieces for the minor case in Fig.5, suggesting that either there is a correlation between
the modality and the class of the composer, or that the data set used might be biased.
Indeed out of the 754 samples, 360 are Classical pieces, while 394 are Romantic pieces,
with 102 of the Classical pieces being minor compared to the 185 minor pieces for the
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Scatter Plot for Minor Chords
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Figure 5: Scatter Plot Matrix for Minor Pieces



Romantic era. However, tempting as it is to assert the correlation between modality
of the pieces and their era, the difference between the numbers could likely come from
uneven sampling of the composers of each era. For the Classical pieces, a large amount
of the samples come from Mozart and Haydn, while Tchaikovsky and Chopin, two of
the more somber characters during the Romantic era, are the two largest contributor
to the Romantic samples. Nevertheless, although there might be an inherent bias
regarding the composers used for the samples, all of the four composers are known to
be representative of the compositions techniques used of their respective era, therefore
the analysis of the harmonic contents, ie. chords, should remain sufficiently useful.

4 Methodology

4.1 Conventional Machine Learning

This paper could largely be divided into two parts, conventional machine learning and
deep learning. For the machine learning part, we will examine most of the commonly
used classification models ( Logistic, SVMs, Tree etc.) on a data-frame composed of
the chordal information of pieces. The entire process is as shown in the flowchart of
Fig.6. First, a collection of pieces in MIDI files is retrieved from the ELVIS Database,
composed of Classical and Romantic pieces are processed by the built-in functions of
the MIDI-toolbox to extract some of the basic mid-level information of the piece such
as the key, meter, and modality (major/minor) of the piece [5] [13]. Then, the raw
data is fed into a basic chord recognition function (described in detail in section 3.1) to
extract the chordal information of the piece. Once the chord progression of the piece
is obtained, the ratio between each chord type and the number of chords is outputted
to the data frame as a number between 0 to 1, while the key, meter and modality of
the piece is encoded as categorical variables in addition of the true class variable.

After the data-frame is generated, it is used to train most of the well-known,
standard classification models with 5-fold cross validation. These are: Decision Trees,
Logistic Regressions, Naive Bayes, Support Vector Machines (SVMs) with Linear,
Quadratic, Cubic and Gaussian kernels. We then further examine the performance of
the models after training.

4.1.1 Making of the Data-frame

The generation of the data-frame could be largely separated into three steps:

1. Extraction of the basic Mid-level features such as the Key of the piece using
the Krumhansl-Schmuckler key-finding algorithm as implemented in the MIDI-
Toolbox [5] [14].

2. Cut the piece into frames of a beat or a measure
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Figure 6: Flowchart for Conventional Machine Learning

3. Run the chord classifying function for each beat with respect to the key, and
record the chords as a ratio of the total number of chords for the data-frame.

The first step of this sequence is strait-forward, as the Krumhansl-Schmuckler (KS)
key-finding algorithm is one of the most often used and relied upon key-finding methods
in MIR research[5]. The KS algorithm constructs a histogram of notes, then categorizes
the piece by key names based on the histogram’s best match with built-in templates.
The second step outlines one of our assumptions, that a chord generally does not change
mid-beat. Although countless counter examples could be found for this assumption,
it does generally hold true for the genres that we examine in this paper, Classical
and Romantic music. The third step is the actual classification of the notes in each
beat/measure to a chord label.

4.1.2 Chord Recognition

Firstly, the notes from each beat/measure are reclassified into 12 semitone based pitch
class profile (PCP) of C, C#, D, D# etc., represented by integers from 0-11. Then,
by taking into account of the key of the piece, we run a chord recognition function
implemented using the fundamentals of music theory to label the chords. This is an
expert-machine whose working is illustrated via a decision tree as shown in Fig.7.
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Figure 7: Chord Recognition Function

The input space is an feature vector of pitch-classes to represent the notes
of each beat, and another Key-class to represents both the key of the piece and
its modality. The function then uses modular operation to determine the different
scale degrees of the using modular arithmetic (ie. Supertonic = (Key + 2) mod 12,
Mediant(major) = (Key+4) mod 12 and so on), and checks for its existence in the
feature vector. The function then deducts which of the basic diatonic chords existing
in the scale is the most likely as per the decision tree in Fig.7. If the function is unable
to find a suited chord, or there is not enough information, it assumes that the chord
is non-diatonic, and “ND” is outputted.

Although other chord recognition models exist that use more advanced clas-
sification techniques such Hidden Markov Model (HMM), N-gram models and Convo-
lutional Neural Networks (CNN), [7] [3] for the current purposes of this paper, this
rule based identification algorithm is sufficient.

4.1.3 Markov Chain

Noting that since chord progressions are progressions, we do not only need to have the
ratio of each chords, but also have the need to capture the relationship between the
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chords. For this purpose, we can use a Markov Chain.

A Markov Chain is a stochastic process that models the transition of a state
based solely on the current state. Named after A.A.Markov, the Markov chain has
seen wide and common usage in the field of artificial intelligence, machine learning
and modeling. [9] Simply put, for each stage there is a certain possibility of transition
to another state (or itself). In our case, this would be the transition of chords, as
illustrated in Fig.8, where the numbers correspond to the chords in a scale. As could
be seen, all chords could transition to any chords. Joining the chords in a major scale
and that of a minor scale, we could model an entire Markov Chain via a transition
matrix P of dimensions 14 by 14 for each piece, with (i, j) being the probability of
transition from ¢ to j. With this in mind, we can flatten this matrix and feed this
into the data frame for training, resulting in a total of 213 predictors available for the
training.

Figure 8: Complete Graph of Chords

4.2 Neural Networks
4.2.1 Data Encoding

Since in general, neural networks are more “data-hungry” than other classification
methods, we should aim to conserve as much of the original data as possible. This
means that we could no longer classify all chords into a vocabulary of 14 chords.
However, since musical data usually contain many notes at a time, we still have to
work with chords nonetheless. Therefore, we will use an encoding method similar to
One-Hot encoding for chords, known as a chroma-vector illustrated in Fig.9.[6] As
illustrated, this is a 12 dimensional vector, with each dimension representing a note in
a musical octave. By slicing the music into sections measure by measure, the chroma-
vector would encode the notes played by assigning the value 1 to the corresponding
note. Then, we get a time series of chords.
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Figure 9: A chroma-vector representing a single chord
4.2.2 Data Formatting

To preserve comparability, we use the exact same set of 754 MIDI files for the training
of our neural network as we have for the previously mentioned methods. However,
due to the significantly longer training time for a neural network, using the same 5-
fold cross validation technique for the LSTM network is much too impractical for the
amount of computational power available for this project. Therefore, we will divide
the data set into 682 training files and 76 test files. Only the training files would
be used for the training of the neural network, while the 76 test files would be used
for validation. This is a stronger test than the 5-fold cross validation used for other
methods, since the test files are never used for the training of the model.

In order to maximize the utility of our limited database, and to fulfill a
neural network’s requirement of data with our moderately sized data set of around
700 pieces, each piece — ie. chord progression — is split into smaller sequences of
length 50, resulting in around 1500 distinct sequences available for training.

The data is then organized into smaller groups of data known as Mini-batches
to train the neural network each iteration in order to avoid memory overflow.[1] How-
ever, since MATLAB’s Deep-learning package requires that the length of the sequences
in a given Mini-Batch to be the same, filler data is added to the shorter sequences
known as padding. Since padding is filler data and does not add any meaningful infor-
mation to the network, it is best minimized. By simply sorting the data by sequence
length, we have achieved that goal as illustrated in Fig.10, where the white space
within the red boundaries being the amount of filler needed for each Mini-Batch.
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Figure 10: Sorted vs Unsorted data
4.2.3 Neural Network Architecture

Considering the complexity of musical chord progressions, the network needs to be
sufficiently deep in order to capture the patterns and regularities in the data. However,
since there are no convention regarding scale needed for such a task, we have opted for
the following design as shown in Fig.11, the scale of which is limited by our available
hardware. Following the sequence input layer is a bidirectional LSTM network with
250 layers that outputs a sequence which feeds to a drop out layer to prevent over
fitting. This intermediate sequence is then passed to a conventional LSTM network
(250) which provides a single output, passing through another dropout layer, to a
softmax function, outputting the classification. The layer numbers here are chosen
according to the limitation of the graphical computing power available to students at
the CAEN Labs of the University of Michigan.
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5 Results from Conventional Machine Learning Mod-
els

The data frame as outputted by the chord classification algorithm is formatted as
illustrated in Fig.6, and is used for model training. Models trained include different
grades of decision trees, logistic regression, Naive Bayes, and Support Vector Machines
(SVMs) and different Ensemble methods as shown in Fig.12 and Fig.13.

It could be seen in the figures, that most of the models did not perform well,
the Kernel Naive Bayes in particular would have performed better had it just picked
"Romantic’ for all of the samples. Two of the most popular methods in classification,
decision trees, including the ensemble boosted and bagged trees also did not seem to
work particularly well. On the other hand, the various SVM methods, on average,
outperformed all of the other classification models.

5.1 SVM Optimization

Since the SVM methods with the Gaussian kernel showed the most promising results,
we will attempt to optimize it to obtain a higher accuracy. The function for the
Gaussian kernel is as follows:

K (1, ) = exp (_M) 1)

202

where x; and x5 are the two feature vectors, and o is the width of the kernel, which
in this case is also one of the tuning parameters. Another tuning parameter will be
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Figure 12: Models trained 1

the box constraint, the “maximum penalty imposed on margin-violating observations.”
There tuning parameters are then optimised using a Bayesian Process for 30 iterations,
as illustrated in

Taking a look back at Fig.4 and Fig.5, the suitability of the SVM methods
seems to be more understandable. In Fig.12 and Fig.13, the correlation between
the ratios and the classes are minimal, and no clear cut boundaries could be drawn
between the Classical pieces and the Romantic ones, which would explain the sub-
optimal performance of the models other than the SVM. On the other hand, the
SVM’s ability to generate new dimensions makes it possible to work around the low
correlation between he chord ratios and the class, and draw a boundary hyper-surface
using the additional dimension.

Indeed, looking at Fig.15, we see that with an overall accuracy of 73.3%,
and a rather even distribution of TPR of 72.8% for Classical pieces, and 73.9% for
Romantic pieces, we have produced a respectable accuracy of around 70%, not too
far from some earlier studies for content based musical classifier, with only a rule
based chord classifier, and a well-known SVM classification model, albeit with only
two categories. [11]

However, since we have used an optimised SVM, the interoperability of the
model is much worse than optimal; hence, one resorts to looking for correlation between
the misclassified data points and the raw data. Yet, unfortunately, we were not able
to find a significant correlation between the misclassified pieces and the composers, or
the length of the piece.
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6 Results from the LSTM-based architecture

6.1 Training

The training of the neural network was accomplished using an Adaptive Moment Esti-
mation (Adam) optimizer, developed by Diederik Kingma and Jimmy Ba in 2015. [10]
Although the specific workings of this optimizer is beyond the scope of this paper, the
Adam optimizer is, on a high level, an enhanced gradient-based stochastic optimizer
that has been empirically shown to handle noisy data with sparse gradients. Even
so, the training process, as shown in Fig.16, was rather volatile with training accu-
racy varying wildly, with the first 5000 iterations showing very minimal progress, if
any at all. The accuracy then grows somewhat consistently, plateauing at around the
17,000th iteration, when we start to see some separation between the training accuracy
and the validation accuracy.

70

Accuracy (%)
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= 3

@
&

20—

0 | 1 1 1 |
0 05 1 15 2 2.5
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Loss

D ! I I I
[ 05 1 15 2 25
Iteration x10%

Figure 16: Training of the Network

6.2 Analysis

Looking at the confusion matrix, Fig.17, we could see that the out-sample validation
accuracy has reached 82.7%, significantly higher than that of the SVM model shown
previously, not to mention all the other machine learning methods aforementioned.
Judging by the confusion matrix, the classification of the Romantic pieces seems to be
very acceptable, as only 8.3% of the Romantic pieces are misclassified into the Classical
category. However, on the other hand, the network also seems to be rather biased
towards choosing the Romantic category. As opposed to the 8.3% misclassification

18



rate of the Romantic pieces, the 25.6% misclassification of the Classical pieces does
seem significantly higher.

Confusion Matrix
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Figure 17: Confusion Matrix for the LSTM

It is harder to tell much more from the confusion matrix alone, and, due
to the black-box characteristics of the LSTM network, or any neural network for that
matter, looking into the internal weights and biases would do little to help up interpret
the model either. Therefore, by examining the prediction made with respect to the
composers of the pieces used in the training, we get more insight into the network.
For all the major composers, whose piece is used, we took up to 20 random samples
for each composers, and recorded the accuracy of the predictions, shown in Fig.18

Interestingly, perhaps not entirely surprisingly, the Classical composers that
received the most accurate predictions are those whom one might consider to be
quintessentially “Classical,” ie. Haydn and Mozart, who are renowned for their rather
“conservative” composing techniques. On the other hand, the composer that scored
the lowest among the Romantics is Mendelssohn, who, famous and respected though
he was, was known for his old fashioned composing techniques and chord progressions.

Should one dig deeper into this, one would see that the network exhibits
similar behaviours within the compositions of a composer. For example, Schubert’s
earlier work, Mass 2, D.167 was largely categorized correctly with 4 out of 6 of its
movements labeled as “Classical.” However, for his later work, the 13 Huttenbrenner
Variations, D.576, all of its 13 movements were labeled as “Romantic” without ex-
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Classical Romantics

Beethoven 0.625 Grieg 0.8125
Haydn 0.95 Mendelssohn 0.66
Schubert 0.28 Chopin 0.9
Mozart 1 Liszt 0.875

Tchaikovsky 0.95

Figure 18: Prediction Accuracy per Author

ception. Likewise, for Mendelssohn’s earlier work, Op19, 3 of its 6 movements were
wrongly categorized as “Classical,” while his later Op30 only had 2 of its 5 movements
wrongly labeled. His latest work in the data set, Op62 were all categorized correctly.
The fact that the network’s prediction coincides so well with one would logically expect
given one’s musicological understanding of the composers and their composing styles,
it is not hard to see that the network might have caught onto something in the chord
progression that is very closely related to the Classical-Romantic dichotomy.

7 Conclusion and Future Work

Needless to mention, the scale of this project is definitely limited, and so is its depth.
Although an out-sample accuracy of around 82% has been reach through the LSTM
network, and a cross-validated accuracy of 72% for the simpler SVM classifier, there
is no guarantee that this approach would continue to work, should we want to predict
more categories with the model. Recently, some papers have published the use of Con-
voluted Neural Networks and Deep Residual Network for chord classification, which
has a much greater vocabulary than the 14 chord output of the chord classification
method used for this paper, and could even function as a noise filter for the chord
sequences in the neural net [15] [7]. A more accurate and capable chord classifier like
those would likely be significantly beneficial to this project.

Although this project deals exclusively with MIDI files, it would also be
interesting to see if in the future one could combine the study of mid-level information
such as the chord progressions with the analysis of the sound spectrum (low-level
information). In this case, we would have a classifier that is trained on both types
of data, MIDI for the chord progressions and such, and audio file for the low level
information, and given that the field of sound spectrum analysis has already quite a
few works on music classification, it would be interesting to see how the two systems
could work together.

Additionally, although in this experiment, the LSTM network significantly
outperformed the SVM, there might be some possibility lying in the combination of
the two, likely a sort of boosted model. As the LSTM network deals exclusively with
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sequences, adding some higher level information such as the Key, Meter, Tonality
etc. might give a network the necessary additional information, leading to better
predictions.
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