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Abstract

The pypomp package is a new Python-based library for modeling likelihood-based inference on

partially observed Markov process (POMP) models. Designed with the same goals as the R package

pomp, pypomp offers a flexible environment for modeling nonlinear, non-Gaussian dynamic systems

and supports both standard particle filtering and gradient-based estimation methods. By leveraging

modern computational tools such as automatic differentiation (AD) and Graphics Processing Unit

(GPU) acceleration via JAX, pypomp enables efficient inference for POMP models. We test and

validate the pypomp package by using the Heston stochastic volatility model as a test case. Through

this case study, we indicate the potential of pypomp to serve as a robust, extensible tool for scientific

modeling and the development of advanced inference algorithms.
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Chapter 1. Introduction

Inference for dynamic systems governed by latent processes is a core process in modern statistical

science, with applications to various fields such as epidemiology, ecology, and finance. Partially ob-

served Markov process (POMP) models, also known as hidden Markov models or state space models

provide a principled framework for modeling such systems, in which a latent stochastic process drives

an observed time series. However, only partial and noisy observations of the true underlying state are

available in POMP models and general Maximum Likelihood Estimation (MLE) is often infeasible

due to the intractability of the likelihood, which involves integrating over high-dimensional latent state

spaces.

The improved Iterated Filtering (IF2) algorithm introduced by Ionides et al. [2015], suggests an

alternative to approach these challenges. IF2 uses the particle filter, also known as the sequential Monte

Carlo (SMC) method, to estimate parameters in POMP models and it iteratively refines parameter

estimates by introducing stochastic perturbations to the parameters, which facilitates convergence to

the MLE. IF2 is a plug-and-play method that enables parameter estimation without requiring analytic

expressions for transition densities, making it applicable to a wide variety of scientific models such as

epidemiology [King et al., 2008, Subramanian et al., 2021, Wheeler et al., 2024], ecology [Li et al.,

2024], and finance [Szczepocki, 2020], [Sun, 2024].

The R package pomp has provided a powerful framework including IF2 for likelihood-based in-

ference on POMP models [King et al., 2016], but with the growing use of Python in scientific comput-

ing, there is a need for a library with similar modeling capabilities that also support modern numerical

frameworks. In response to these needs, the pypomp package is being developed as a Python-based

analog to pomp, and it supports plug-and-play particle filtering and simulation for POMP models, but

it is also designed as a library for new algorithmic development. Key innovations in pypomp include
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the use of automatic differentiation (AD) for efficient gradient computation and the integration of JAX

for just-in-time (JIT) compilation and GPU acceleration, enabling significant computational efficiency.

One of the central algorithmic contributions of pypomp is the Iterated Filtering with Automatic Dif-

ferentiation (IFAD) algorithm, introduced by Tan et al. [2024]. Unlike IF2, which relies on stochastic

perturbations for optimization, IFAD integrates gradient based updates through AD. This approach im-

proves computational efficiency by combining rapid exploration of the parameter space via stochastic

perturbations with precise gradient refinement. However, as pypomp is currently at early stages of

development, it requires rigorous testing to ensure its correctness, stability, and reproducibility across

applications.

We evaluate and test the current state of pypomp by using the Heston stochastic volatility model

as a diagnostic benchmark. Sun [2024] applied the IF2 algorithm using the pomp package in R to

estimate the parameters of the Heston stochastic volatility model and we attempted to replicate these

results using IF2 in pypomp. We then apply IFAD within the pypomp framework to estimate the same

model parameters, comparing the inference quality, stability, and computational efficiency. Rather than

focusing on improved inference for the Heston model itself, this research uses the model as a structured

test case for evaluating the behavior and correctness of pypomp.

Our contributions extend beyond benchmarking by helping pypomp to advance through rigorous

testing and debugging. Specifically, we identified several critical issues and provided concrete fixes

and analysis that contribute to the development of a robust, reliable inference in pypomp. As pypomp

is currently in pre-release, our numerical results indicate its potential for development and provide

insights as an innovative library for scientific inference and methodological research in dynamic sys-

tems.
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Chapter 2. Background

2.1 Partially Observed Markov Process Models

A partially observed Markov process (POMP) model consists of an unobserved latent stochas-

tic process {X(t), t ≥ t0} with noisy observations Y1, . . . ,YN collected at discrete observation times

t1, . . . , tN . We assume:

• X(t) takes values in X⊂ Rdim(X),

• Yn takes values in Y⊂ Rdim(Y)

• θ denotes a unknown parameter taking values in Θ ⊂ Rdim(Θ)

Then, we define ym:n = ym,ym+1, . . . ,yn for integers m ≤ n, and let Xn = X(tn) be the latent state at

observation time tn. Thus, the full set of observations is denoted Y1:N . Therefore, the joint density of

the latent states and observations factorizes as:

fX0:N ,Y1:N (x0:N ,y1:N ;θ) = fX0(x0;θ)
N

∏
n=1

fXn|Xn−1(xn | xn−1;θ) fYn|Xn(yn | xn;θ).

where:

• fX0(x0;θ) is the initial state density,

• fXn|Xn−1(xn | xn−1;θ) is the transition density of the latent process,

• fYn|Xn(yn | xn;θ) is the measurement density connecting latent states to observations.

The data consist of observed realizations y∗1:N . The marginal density of the observations, fY1:N (y1:N ;θ),
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induces the likelihood function:

ℓ(θ) = fY1:N (y
∗
1:N ;θ)

Inference is typically focused on finding the MLE θ̂ , which maximizes ℓ(θ).

2.2 Iterated Filtering Algorithms

The key idea behind IF2 is to embed the estimation of parameters within a particle filter by in-

troducing small random perturbations to the parameters across time steps. These perturbations are

gradually reduced over multiple iterations, enabling the algorithm to stochastically explore the likeli-

hood surface and converge toward the MLE. Unlike its predecessor, IF1 introduced by Ionides et al.

[2011], which approximates the score function via conditional moments, IF2 performs an iterated

Bayes map, providing more robust numerical properties and convergence guarantees. (pseudocode in

Appendix A)

The particle filter is a foundational tool for inference in POMP models. It enables likelihood-based

inference [Ionides et al., 2006] and Bayesian inference [Chopin et al., 2013], [Andrieu et al., 2010]

by providing Monte Carlo estimates of the likelihood function of observed data given model parame-

ters. Specifically, the particle filter approximates the likelihood by simulating a collection of possible

latent trajectories (particles) and sequentially weighting them according to how well they explain the

observed data. This approach is both flexible and powerful, particularly for models where the latent

dynamics are nonlinear and non-Gaussian [Arulampalam et al., 2002], [Kitagawa, 1987]. On top of

that, the particle filter produces an unbiased estimate of the likelihood [Doucet et al., 2001], making

it suitable for likelihood-based inference as it only requires accurate estimates for the likelihood. As

a result, IF2 builds directly on the particle filter to perform plug-and-play likelihood maximization,

without losing the statistical rigor of likelihood-based approaches.

The advantages of IF2 are its plug-and-play flexibility and stochastic robustness. Specifically, IF2

does not require the evaluation of transition densities, which allows it to be applied to models defined

via simulation and the iterative perturbation process helps avoid early convergence to the local optima,

which is common in complex likelihood surfaces. Also, the numerical results from Ionides et al. [2015]
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indicate that IF2 can approximate the MLE arbitrarily well, under mild regularity conditions, as the

number of particles and iterations increase.

The original implementation of IF2 was developed in the R package pomp, but R presents limi-

tations in computational scalability, especially for models requiring GPU acceleration or AD. This is

where Python and pypomp become critically useful. The field of Python research has grown rapidly

due to its integration with high-performance libraries like JAX, as well as GPU-accelerated frame-

works. As pypomp leverages modern features such as JIT compilation and AD, it makes it particularly

well-suited for research using large-scale data.

2.3 Automatic Differentiation Particle Filter

Automatic differentiation (AD) is a computational process that enables the efficient and accurate

calculation of derivatives for functions implemented as computer programs. Also, AD computes exact

derivatives by systematically applying the chain rule to a sequence of elementary operations [Rall

and Corliss, 1996, Verma, 2000]. This capability is particularly powerful in fields such as machine

learning, numerical optimization, and scientific computing, where gradient based methods are used.

AD operates by breaking down a function into a finite sequence of elementary operations and

computing their derivatives step-by-step. AD can be implemented in two primary modes:

1. Forward Mode:

• Computes derivatives by propagating derivatives from the inputs to the outputs.

• Efficient for functions with few inputs and many outputs.

2. Reverse Mode:

• Computes derivatives by propagating gradients backwards from the outputs to the inputs.

• Efficient for functions with many inputs and few outputs.

Both modes rely on the chain rule to propagate derivatives through computation:

∂ f
∂x

=
∂ f
∂y

· ∂y
∂x
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Recent work has extended the use of AD to particle filtering and inference for POMP models. The

advantage of using AD is the gradient-based optimization for POMP models. Several papers have ex-

plored differentiable particle filters. For instance, Jonschkowski et al. [2018] introduced differentiable

filtering networks, and Naesseth et al. [2018] proposed variational inference approaches using AD to

optimize latent state models. However, these early approaches typically relied on low variance but

asymptotically biased estimators of the gradient, raising concerns about their long-term reliability and

statistical guarantees.

The Automatic Differentiation Particle Filter (ADPF), introduced by Tan [2023], overcomes these

issues by framing the particle filter as a differentiable computational graph. On top of that, Tan et al.

[2024] introduces the Measurement Off-Parameter with discount factor α (MOP-α) algorithm (pseu-

docode in Appendix A) that defines estimators for the gradient of the log-likelihood where the estima-

tors balance the tradeoff between bias and variance. At α = 0, low-variance estimators can be highly

biased, while at α = 1, unbiased estimators tend to suffer from high Monte Carlo variability. MOP-α

interpolates between these extremes, allowing users to refine the factor based on precision needs.

The Iterated Filtering with Automatic Differentiation (IFAD) algorithm (pseudocode in Appendix

A) introduced by Tan et al. [2024] represents another development of using ADPF. The IFAD algo-

rithm incorporates MOP-based gradient estimators into the structure of the IF2 algorithm. Like IF2,

IFAD executes a stochastic perturbation of parameters through a particle filter. However, instead of

fully relying on perturbations to update parameter estimates, IFAD supplements this process with

gradient-based updates using AD. This process enables IFAD to overcome the two core challenges of

IF2 such as Monte Carlo variability from noisy perturbation updates and slow convergence in high-

dimensional spaces.

2.4 Stochastic Volatility Models

Stochastic volatility models play a central role in financial modeling, where accurately capturing

the evolution of asset price variability is crucial for derivative pricing, risk management, and portfo-

lio allocation. Among these models, the Heston model is widely used due to its ability to represent

volatility as a mean-reverting stochastic process. However, parameter estimation for such models is
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challenging because of the intractability of their likelihood functions and the presence of latent vari-

ables.

The estimation of parameters in stochastic volatility models remains a challenging problem, pri-

marily due to the computational complexity of the likelihood function, which involves high dimen-

sional integration. Various methods have been developed to address these challenges. Aı̈t-Sahalia and

Kimmel [2007] developed a maximum likelihood estimation method that addresses these challenges

by employing closed-form approximations to the likelihood function. Chib et al. [2002] and Chib

et al. [2006] developed Markov Chain Monte Carlo (MCMC) algorithms for generalized stochastic

volatility models. However, these methods are computationally intensive for high dimensions.

The Heston model introduced by Heston [1993], one of the most widely used stochastic volatility

models includes a mean-reverting stochastic process for volatility, revealing the limitations of constant

volatility models. Specifically, it assumes that the variance of asset returns follows a Cox-Ingersoll-

Ross (CIR) process, expressed as:

dνt = κ(θ −νt)dt +ξ
√

νt dW ν
t

where

• νt is the instantaneous variance of the asset price at time t,

• κ is the rate of mean reversion in variance,

• θ is the long-term mean level of variance (limt→∞E[νt ] = θ ),

• ξ is the volatility of the volatility,

• W ν
t is the Wiener process in the volatility.

Simultaneously, the asset price St changes according to the following stochastic differential equation:

dSt = µSt dt +
√

νtSt dW s
t

where:
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• St is the asset price at time t,

• µ is the average growth rate of the asset price

• W s
t is the Wiener process in the asset price.

We define the correlation between W s
t and W ν

t as ρ:

ρdt = E[dW s
t dW ν

t ]

The Heston model provides a realistic framework for understanding how volatility changes over

time, enabling more accurate pricing of financial instruments and better investment decisions with

market uncertainty. Therefore, it is effective for testing and comparing parameter estimation algo-

rithms, such as the IF2 algorithm and the IFAD algorithm.
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Chapter 3. Debugging pypomp

As part of evaluating IF2 and IFAD implementations in the pypomp package, we encountered

several numerical instabilities and inconsistencies while testing the Heston stochastic volatility model.

These issues motivated a deeper investigation into the underlying mechanics of pypomp and led to

insights critical to the future reliability of the package.

3.1 Original Testing

From the outset, the pypomp organization incorporated a system of unit tests designed to ensure

that core functionalities such as particle simulation, likelihood computation, and filtering are not bro-

ken when changes are made to the code. On top of that, unit tests provide early warnings if numerical

results shift unexpectedly due to subtle changes in implementation, such as modifications to random

number handling or model setup. This unit testing framework greatly aided the debugging process by

allowing us to localize problems quickly when inconsistencies were observed during benchmarking.

In addition to unit testing, IF2 and the particle filter in pypomp were evaluated through performance

benchmark tests called quantitative tests, or simply quant tests, named by the pypomp organization.

Unlike unit tests, quant tests measure the time to complete filtering and optimization tasks, the mem-

ory requirements during computation, and the number of iterations needed to achieve convergence

for a maximization algorithm. The quant tests were performed using the Linear Gaussian model and

the Dhaka cholera model introduced by King et al. [2008]. The Linear Gaussian model offers an ana-

lytically tractable benchmark, where exact likelihoods and parameter estimates are known. Since the

Kalman filter provides the exact optimal inference for this model, deviations in pypomp results could

be precisely identified and quantified, making it an ideal diagnostic tool for basic functionality and
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performance. The Dhaka cholera model represents a complex, nonlinear, epidemiological system. By

using this model, it allowed developers to assess scalability to large datasets, robustness under com-

plex latent dynamics with the particle filter and IF2 algorithm. Performance metrics from these two

models helped ensure that IF2 and particle filter in pypomp could handle both analytically simple and

scientifically realistic POMP models with reasonable computational resources.

3.2 Issue in Original R code

Before investigating issues within pypomp itself, we first carefully examined the R code provided

by Sun [2024] for the Heston stochastic volatility model. During this process, we identified a criti-

cal flaw that the latent volatility process V was not correctly updated over time inside the rprocess

simulation step.

In the correct implementation of the Heston model, volatility V must evolve dynamically according

to its stochastic differential equation. However, in the original R code, it did not update V from one

time step to the next. As a result, volatility remained constant or evolved incorrectly, fundamentally

altering the latent dynamics of the model. We corrected this by adding a proper stochastic update for

V at each time step within the rprocess function in R.

3.3 Initial Value Perturbation Issue in Iterative Filtering

The first major issue was discovered when we were analyzing parameter evolution during IF2 op-

timization. In the R pomp package, initial value parameters (IVPs) such as the initial state of the latent

process are only perturbed during the first filtering iteration, reflecting the fact that IVPs lose their

influence over time as the latent process evolves [Ionides et al., 2015], [King et al., 2016]. Perturbing

IVPs throughout the entire optimization adds unnecessary noise and destabilizes the inference.

By contrast, pypomp initially perturbed IVPs continuously across all iterations as it did not yet

distinguish IVPs from other parameters in the filtering process. This behavior reduced optimization

performance and introduced instability to our numerical results, as perturbations on IVPs continued

to introduce variability into later stages of optimization where the IVPs should have been forgotten by
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the model dynamics.

This oversight can be understood by considering the origins of the pypomp codebase. The initial

pypomp development was built based on code supporting the experiments in Tan et al. [2024], where

the models studied either avoided the IVP issue or were not sensitive to it. In that experimental context,

continuous IVP perturbation did not create critical problems. However, pypomp aims for a more

general and flexible scope, supporting a wide range of POMP models such as the Heston stochastic

volatility model, where IVPs play a substantial role in early dynamics but diminish later. The broader

generalization intended for pypomp exposed the need to properly handle IVPs.

It is common during software development that bugs emerge when generalizing code beyond its

original use case. In this case, what worked for specific research applications in Tan et al. [2024]

needed further refinement to support a general plug-and-play POMP modeling framework. After di-

agnosing this issue during our testing, we reported the misbehavior, and it was subsequently corrected

by Jun Chen, one of the founding developers of the pypomp organization.

Even after the IVPs issue was resolved, the log-likelihood estimates obtained using 1,000 particles

were significantly below the anticipated value (around 11849, based on Sun [2024]’s results) and

often produced errors. However, when using 10,000 particles, the estimated log-likelihood reached

the expected value and errors disappeared, indicating that other numerical stability issues also needed

to be addressed.

3.4 Particle Depletion Assumption

This pattern suggested the presence of particle depletion, also known as particle degeneracy, a

common problem in particle filter algorithms. Particle depletion occurs when, after resampling, most

particles are either discarded or receive extremely low weights [Daum and Huang, 2011]. This leads to

a lack of diversity in the particle population and log-likelihood estimates become biased or undefined

as likelihood estimates are computed from weighted particles [Gustafsson et al., 2002]. Also, when

estimating parameters in IF2, if particles get depleted early, the algorithm struggles to explore dif-

ferent parameter values, resulting in suboptimal estimates. To mitigate particle depletion, increasing

the number of particles reduces variance and prevents all weights from collapsing, so the numerical
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stability gets improved. As the characteristics of particle depletion correspond to the situations that we

were experiencing, it supported our assumptions.

To diagnose this, we analyzed the conditional log-likelihoods and particle traces of parameters.

In a POMP model, the observations are random, and we want to compute the likelihood of observing

the data, given a parameter θ . Instead of looking at the full likelihood at once, we break it down

sequentially. At each time point tk, the conditional likelihood is the probability density of the current

observation, given all previous observations. In other words, the conditional log-likelihood is the value

of the density of Y (tk) |Y (t1), . . . ,Y (tk−1) evaluated at Y (tk)= y∗k where Y (tk) is the observable process,

and y∗k is the data, at time tk.

Thus, the conditional log-likelihood at time tk is

ℓk(θ) = log f
[
Y (tk) = y∗k | Y (t1) = y∗1, . . . ,Y (tk−1) = y∗k−1

]
where f is the probability density above.

If particles are depleted at some time tk, meaning most particle weights are near 0 except for very

few, then the sum of the weights becomes very small. This will affect the conditional log-likelihood

ℓk(θ) to be highly negative and it will show a large negative spike in the plot. In contrast, when

particles are not struggling from depletion, ℓk(θ) behaves smoothly without huge fluctuations.

For this analysis, at each IF2 iteration, we recorded the conditional log-likelihood at every obser-

vation time tk. Then, for each time index k, we averaged the conditional log-likelihood values across

all IF2 iterations. Averaging across iterations helps smooth out random Monte Carlo fluctuations and

indicates systematic patterns in the optimization process.
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Figure 3.1: Average conditional log-likelihood over time

Figure 3.1 represents the time series of the average conditional log-likelihood over the full dataset

in an one repetition. The plot shows that the conditional log-likelihood values fluctuate over time, as

expected due to the stochastic nature of the optimization process and variability in particle weights.

Some downward excursions are visible, but none of the conditional log-likelihood values fall to levels

that would indicate a particle depletion issue. In other words, the lower excursions do not suggest that

particle weights collapsed or that the particle population failed to support likelihood evaluation at any

time point.

During IF2, the parameters are perturbed at each time point tk slightly and each particle carries a

slightly perturbed parameter θ
(i)
k . The particle traces of parameters record θ

(i)
k for each particle i over

each time tk, so tracking particle traces is helpful to analyze whether parameters collapse (particles

become identical), or the particle diversity is maintained. Thus, if a particle depletion occurred, then

most particle traces will collapse to a few lines and the spread in parameter values will be lost.

By inspecting these traces, we attempted to localize potential failures at particular time points.
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However, no obvious collapse or degeneration was observed across the traces, suggesting the problem

might lie elsewhere.

3.5 Just-in-time Compilation Issue

A deeper debugging and investigation revealed that the root cause of instability and errors was

not particle depletion, but rather faulty random number generation during JIT compilation. Specif-

ically, random perturbations for particles were originally drawn using np.random.normal, a NumPy

function. JAX’s JIT compilation requires that all random number generations be explicitly managed

via jax.random.PRNGKey because JAX uses pure functional programming while NumPy does not.

Previously, keeping keys from being split and mixing np.random with JIT-compiled functions led

to uncontrolled randomness. In other words, the same random values were reused repeatedly across

particles and iterations, corrupting the filtering and optimization process and producing errors in like-

lihood estimations. After using JAX random number generation such as jax.random.normal rather

than np.random and ensuring that keys were explicitly split, the random perturbations became truly

random, the errors disappeared, and likelihood estimates stabilized.
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Chapter 4. Iterative Filtering in pypomp

Sun [2024] applied the IF2 algorithm implemented in the R package pomp to estimate the pa-

rameters of the Heston stochastic volatility model using daily Standard & Poor’s 500 index (S&P500)

log-return data from 2010 to 2024. His study indicated the ability of IF2 to recover volatility dynamics

consistent with market benchmarks like the VIX index, and showed the model significantly outper-

formed classical GARCH-based benchmarks in terms of log-likelihood. His research also conducted

profile likelihood estimation on each parameter, initially profiling over µ , and subsequently fixing µ at

its smoothed profile MLE to improve optimization stability. In our study, we sought to replicate Sun’s

results using the pypomp package. While Sun performed profiling to construct confidence intervals,

we did not require profiling of µ in our setting since our goal was not to conduct inference but to test

and validate the numerical behavior of the pypomp IF2 implementation.

4.1 Log-likelihood Trace

The log-likelihood trace records the IF2 log-likelihood estimate at each iteration. It is computed

using perturbed parameters and is inherently noisy due to stochastic perturbations during optimization.

Nonetheless, the overall trend is expected to increase (or equivalently, the negative log-likelihood

should decrease) as the algorithm refines parameter estimates.

Tracking the log-likelihood trace serves as an important internal diagnostic for the IF2 optimiza-

tion process. By analyzing the evolution of log-likelihood values across iterations, we can assess

whether IF2 is making consistent progress toward better fitting parameter regions, identify conver-

gence behavior, and detect potential issues such as instability during optimization.

To evaluate the internal optimization process of both pomp and pypomp, we compared the log-
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likelihood values estimated at each iteration of the IF2 algorithm. To ensure that differences in start-

ing points did not affect the comparison, we sampled and stored 120 initial parameter sets from Sun

[2024]’s model using pomp and then used exactly the same starting values when running IF2 opti-

mization in our model using pypomp. This guarantees that IF2 of both pomp and pypomp implemen-

tations began from identical initial conditions, allowing us to attribute any differences to algorithmic

behavior rather than random initial variability.

Figure 4.1: IF2 log-likelihood trace across iterations

Each shaded ribbon in Figure 4.1 represents the 10th–90th percentile range of log-likelihood val-

ues across 120 IF2 replicates at each iteration. The values were computed using perturbed parameters

at each IF2 iteration and represent noisy estimates of model fit throughout optimization. Although

stochastic, the log-likelihood trajectories are expected to improve across iterations as the algorithm

converges toward high-likelihood regions. The results show that broadly similar convergence behav-

ior in both implementations, with pypomp showing noticeably lower variance in its log-likelihood

traces compared to pomp. This suggests that pypomp is not exploring the parameter space as exten-
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sively as pomp. Thus, while IF2 optimization is functioning and improving log-likelihoods in both

packages, there are meaningful differences between the two implementations. Minor differences are

always expected when comparing independently developed codebases in different languages, but our

findings suggest that pypomp’s IF2 implementation is different from pomp in ways that affect pa-

rameter exploration and optimization dynamics and hence could affect the final parameter estimates.

4.2 Parameter Estimate Trace

The parameter estimation traces show the evolution of each parameter across IF2 iterations. We

average across particles at each iteration to visualize the path of optimization. As parameters are

iteratively perturbed and adapted toward the MLE, parameter estimation traces are important in the

IF2 process. With this trace, we can analyze whether parameter estimates converge or diverge and

whether they exhibit similar dynamics in pomp and pypomp. Also, if both implementations use the

same algorithmic parameter values, such as number of particles, iterations, and repetitions, then their

traces should be similar. This implies that parameter estimation traces provide qualitative assurance

between pomp and pypomp.

To assess the consistency of the pomp implementation and the pypomp implementation, we com-

pared the evolution of parameter estimations across IF2 iterations.
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Figure 4.2: Parameter estimates across IF2 iterations

Figure 4.2 displays quantile ribbon plots showing the evolution of parameter estimates over IF2

iterations across pomp and pypomp implementations. For each parameter, we show the middle 80%

(10th to 90th percentile) of transformed parameter values at each iteration. The parameters are trans-

formed to the estimation scale such as log-transformed for positive parameters (µ , κ , θ , ξ , V0) and

logit-transformed for the correlation parameter (ρ). This transformation ensures a reasonable compar-

ison since both implementations optimize in transformed space.

Across all six parameters, we observe similar convergence behavior between the two implemen-

tations. Both implementations stabilize similarly to transformed values, indicating agreement in the

inferred parameter regions but still there are noticeable differences in the median trajectories.

Then, we assess whether the two implementations arrive at consistent parameter estimate.
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Figure 4.3: Final IF2 parameter estimates

Figure 4.3 displays the transformed parameter estimates at the final IF2 iteration from 120 inde-

pendent IF2 runs in both pomp and pypomp. Each point represents the final parameter estimate from

one IF2 replicate, transformed to the estimation scale (log or logit). To enhance the interpretability of

parameter comparison, extreme parameter estimates were filtered out prior to visualization. For each

parameter, only parameter estimates between the 10th and 90th percentiles are shown, to focus on the

central distribution and reduce the influence of extreme outliers.

Across parameters, the distributions of final estimates are similarly aligned between the two im-

plementations. Slight differences in spread and central tendency appear in the parameters and these

results indicate that while the two implementations do not produce identical traces, they broadly agree

in terms of convergence region and variability.
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4.3 Particle Filter Log-likelihood

After IF2 finishes, the algorithm uses a particle filter with particles and no perturbation to esti-

mate the log-likelihood at the final estimated parameters. For each IF2 run, the algorithm computes

the average and standard deviation of estimated log-likelihoods over particle filter replicates. The av-

erage log-likelihood assesses the fit quality of the estimated parameters, and the standard deviation

gives a sense of Monte Carlo variability. With these results, given the same number of particles and

datasets, IF2 algorithm in both pomp and pypomp yield likelihood estimates with similar accuracy

and variability.

To compare the model fit quality across implementations, we examined the log-likelihood values

obtained by applying a particle filter to the final parameter estimates from each IF2 run.

Figure 4.4: Particle filter log-likelihood at IF2 final estimates(outliers excluded)

Figure 4.4 shows a comparison of the log-likelihoods from particle filter evaluations at final IF2

estimates across 120 replicates. Each point represents the mean log-likelihood across iterations for one
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IF2 replicate. While pomp shows a slightly higher median and broader spread with 11850.74 for the

highest log-likelihood, pypomp shows lower median and tighter spread with 11847.34 for the highest

log-likelihood.

To verify that particle filter in pypomp matches the particle filter implementation in pomp, we

conducted a Monte Carlo-based comparison. We used the same stochastic volatility model and the

MLE for each parameter obtained from pomp to evaluate the mean log-likelihood using the standard

particle filter without parameter perturbation across 24 replicates for both pypomp and pomp. The

mean log-likelihood estimated with the MLE in pomp was 11850.74 and the mean log-likelihood

estimated with the MLE in pypomp was 11848.29 with standard deviation 2.78.

These preliminary results suggested that the particle filter in pypomp approximately reproduced

the behavior of pomp within expected Monte Carlo variation. However, comparing only the means of

the log-likelihood estimates is insufficient to fully establish correspondence between the two imple-

mentations.

To provide a more rigorous comparison, we generated 1,000 independent particle filter log-likelihood

estimates from each package without parameter perturbation, using the same MLE parameter values.

To increase the interpretability of the results, we visualized the results using violin plots overlaid with

boxplots. This allowed us to examine the full distribution of log-likelihood estimates and assess the

density, variability, and central tendency in a much more statistically robust way.
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Figure 4.5: Particle filter log-likelihood at MLE

In Figure 4.5, each violin shape shows the estimated density of log-likelihood values, and the

embedded boxplot summarizes the interquartile range and median, and the jittered points show indi-

vidual Monte Carlo replicates. The plot demonstrates that the particle filter in both pomp and pypomp

produce highly overlapping distributions of log-likelihood values, and the medians and interquartile

ranges are nearly identical between the two implementations. In addition, the distribution shapes are

symmetric and centered around similar values, with minor expected Monte Carlo fluctuations.

Thus, this comparison strongly reinforces the conclusion that the particle filter implementation of

pypomp accurately replicates the behavior of the particle filter in pomp, up to the expected variability

due to stochastic simulation. Any observed discrepancies between pypomp and pomp in IF2 results

should therefore be attributed to differences in the parameter perturbation and optimization steps of

the IF2 process, rather than to differences in the underlying particle filter algorithm.
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Chapter 5. Automatic Differentiation Particle Filter in pypomp

Tan et al. [2024] demonstrate that IFAD outperforms both IF2 and MOP algorithms when applied

individually. IF2 alone is prone to slow convergence near the optimum due to diminishing perturbation

sizes and MOP alone is sensitive to local minima and saddle points in non-convex likelihood surfaces.

The strengths of IFAD are a warm start using IF2 to locate a neighborhood near the MLE and a

refinement that uses gradients derived from the MOP-α estimator to perform gradient ascent with

AD. This hybrid approach helps IFAD to overcome two critical limitations of IF2 and MOP.

Using the cholera transmission model developed for Dhaka, Bangladesh King et al. [2008], IFAD

found log-likelihood values significantly better than those reported using IF2 Ionides et al. [2015].

Notably, IFAD reaches the MLE with fewer iterations and without the assistance of likelihood profil-

ing. These results indicate IFAD’s numerical efficiency and statistical accuracy, and its potential as an

innovative plug-and-play method for statistical inference in POMP models.

Encouraged by the numerical efficiency and statistical accuracy of IFAD, we attempted to ana-

lyze its performance implemented in pypomp using the Heston stochastic volatility model from Sun

[2024]. However, during the implementation and testing of IFAD and MOP in pypomp, we encoun-

tered persistent numerical errors and exploding values. Despite initializing the algorithm with plau-

sible parameter values and a reasonable number of particles, errors in gradients and log-likelihoods

frequently occurred during the optimization after the first forward mode of AD, suggesting issues

within the backward mode of AD execution. As these instabilities do not occur in IF2 implementa-

tion of pypomp, it reinforces the conclusion that the source of instability comes from the gradient

refinement in MOP implemented in pypomp.
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Chapter 6. Discussion

Our research contributes to the development, testing, and validation of the early-stage pypomp

package. Using the Heston stochastic volatility model as a test case, we examined the behavior and

correctness of the IF2 and IFAD algorithms in pypomp, comparing results against the pomp pack-

age. For IF2, we demonstrated that pypomp implementation successfully produces log-likelihood

estimates and parameter traces that are consistent with the general behavior of IF2. Particle filter pro-

cess appears to be stable, and likelihood estimates generally improve across iterations, indicating that

the core logic of particle filtering and optimization is in place. Despite these promising results, we

identified several important discrepancies and design issues that will require attention to ensure that

pypomp becomes a fully robust scientific tool.

Although the particle filter behavior matches expectations, there remains meaningful differences

between IF2 results from pypomp and pomp, particularly in log-likelihood traces and parameter es-

timation across iterations. Based on diagnostic comparisons, we conclude that these differences are

not due to the particle filter itself, but rather arise from differences in the IF2 perturbation process.

Specifically, lower variance in log-likelihood traces of pypomp, compared to pomp, suggests that

pypomp may not be exploring parameter space as much as it intended. In addition, a deeper examina-

tion of handling random number generation under JAX’s JIT compilation is essential, and PRNG key

management must be verified at every stochastic step to ensure true randomness and reproducibility.

For IFAD, although the algorithm is theoretically promising and has shown success in recent

research, we encountered persistent numerical instabilities when attempting to apply IFAD to the

Heston model in pypomp. These issues include errors in gradients and log-likelihoods, and failures in

the optimization after the initial iteration. These issues indicate that while IFAD is a prominent method,

the current pypomp implementation should ensure differentiability of the computational graph across
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all IFAD components and manage numerical stability in weight scaling and normalization, especially

in the MOP-α gradient estimators. Beyond debugging, IFAD must be evaluated through quant tests to

assess its scalability and practical utility for statistical inference.

Beyond algorithmic issues, several important design considerations were identified during this

research. Although the IVP perturbation behavior was corrected during debugging, the fix currently

exists in a separate branch and is not yet fully incorporated into the main pypomp IF2 function. Formal

integration is necessary to ensure consistent behavior across models.

On top of that, pypomp currently does not directly provide access to conditional log-likelihoods at

each time point within the particle filter. Conditional log-likelihood traces are extremely valuable for

model validation and debugging, allowing researchers to identify specific times where model fit deteri-

orates or where particle depletion occurs. Adding this feature would greatly enhance the transparency

and diagnostic functions of pypomp.

At present, pypomp supports IF2, MOP-α , and IFAD algorithms but other algorithms available

in R pomp such as Particle Markov Chain Metropolis-Hastings algorithm [Andrieu et al., 2010], and

Ensemble Kalman filters [Evensen, 2003] are not yet implemented. Extending pypomp to include

these algorithms would enable broader applicability and make the package a forward compatibility

with R pomp.
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Appendix A. Algorithms

Algorithm 1 IF2
input: Simulator for fX0(x0;θ)
Simulator for fXn|Xn−1(xn | xn−1;θ), n in 1 : N
Evaluator for fYn|Xn(yn | xn;θ), n in 1 : N
Data, y∗1:N
Number of iterations, M
Number of particles, J
Initial parameter swarm, {Θ0

j , j in 1 : J}
Perturbation density, hn(θ | ϕ;σ), n in 1 : N
Perturbation sequence, σ1:M
output: Final parameter swarm, {ΘM

j , j in 1 : J}
1: for m in 1 : M do
2: Θ

F,m
0, j ∼ h0(θ | Θ

m−1
j ;σm) for j in 1 : J

3: XF,m
0, j ∼ fX0(x0;Θ

F,m
0, j ) for j in 1 : J

4: for n in 1 : N do
5: Θ

P,m
n, j ∼ hn(θ | Θ

F,m
n−1, j;σm) for j in 1 : J

6: XP,m
n, j ∼ fXn|Xn−1(xn | XF,m

n−1, j;Θ
P,m
n, j ) for j in 1 : J

7: wm
n, j = fYn|Xn(y

∗
n | XP,m

n, j ;Θ
P,m
n, j ) for j in 1 : J

8: Draw k1:J with P(k j = i) = wm
n,i/∑

J
u=1 wm

n,u

9: Θ
F,m
n, j = Θ

P,m
n,k j

and XF,m
n, j = XP,m

n,k j
for j in 1 : J

10: end for
11: Set Θm

j = Θ
F,m
N, j for j in 1 : J

12: end for

The main elements of IF2 are:

• Particles: A collection of J Monte Carlo samples approximating the latent and parameter pro-

cesses.

• Iterations: A sequence of M optimization loops indexed by m.

• Perturbation density hn(θ | ϕ;σ): A probability density introducing controlled stochastic per-
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turbations to parameters at each time step n, with scale σ .

• Prediction step: Evolving particles forward through the latent process.

• Filtering step: Weighting particles by how well they explain the observed data, followed by

resampling.

The following notation is used:

• Θ
F,m
n, j : Parameter vector for the jth particle at time n after filtering at iteration m.

• Θ
P,m
n, j : Parameter vector for the jth particle at time n after prediction at iteration m.

• XF,m
n, j Latent state for the jth particle at time n after filtering at iteration m.

• XP,m
n, j : Latent state for the jth particle at time n after prediction at iteration m.

• k1:J: Resampling indices, drawn multinomially based on particle weights at each filtering step.
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Algorithm 2 MOP-α
Input: Number of particles J, timesteps N, measurement model fYn|Xn(y

∗
n | xn,θ), simulator

processn(· | xn;θ), evaluation parameter θ , baseline parameter φ , seed ω .
First pass: Set θ = φ and fix ω , yielding XP,φ

n, j , XF,φ
n, j , gφ

n, j.
Second pass: Fix ω , and filter at θ ̸= φ :
Initialize particles XF,θ

0, j ∼ fX0 (·;θ), weights wF,θ
0, j = 1.

1: for n = 1, . . . ,N: do
2: Accumulate discounted weights, wP,θ

n, j =
(
wF,θ

n−1, j

)α .

3: Simulate process model, XP,θ
n, j ∼ processn

(
· | XF,θ

n−1, j;θ
)
.

4: Measurement density, gθ
n, j = fYn|Xn(y

∗
n | XP,θ

n, j ;θ).

5: Compute LB,θ ,α
n = ∑

J
j=1 gθ

n, j wP,θ
n, j

/
∑

J
j=1 wP,θ

n, j .

6: Conditional likelihood under φ , Lφ
n = 1

J ∑
J
m=1 gφ

n,m.
7: Select resampling indices k1:J with P

(
k j = m

)
∝ gφ

n,m.
8: Obtain resampled particles XF,θ

n, j = XP,θ
n,k j

.

9: Calculate corrected weights wF,θ
n, j = wP,θ

n,k j
gθ

n,k j

/
gφ

n,k j
..

10: Compute LA,θ ,α
n = Lφ

n ·∑J
j=1 wF,θ

n, j

/
∑

J
j=1 wP,θ

n, j .
11: end for
Return: likelihood estimate L̂ (θ) = ∏

N
n=1 LA,θ ,α

n or L̂ (θ) = ∏
N
n=1 LB,θ ,α

n , filtering distributions
{(XF,θ

n, j ,w
F,θ
n, j )}

N,J
n, j=1.

Algorithm 3 IFAD
Input: Number of particles J, timesteps N, IF2 and MOP-α cooling schedules ηm, MOP-α discount-
ing parameter α , θ0, m = 0.
Run initial IF2 search under cooling schedule ηm to obtain {Θ j, j = 1, ...,J}, set θm := 1

J ∑
J
j=1 Θ j.

While procedure not converged:
1: Run MOP-α Algorithm to obtain ℓ̂(θm).
2: Set g(θm) := ∇θ (−ℓ̂(θm)), and consider any H(θm) such that λmin(H(θm))≥ c.
3: Update θm+1 := θm −ηm(H(θm))

−1g(θm), m := m+1.
Return θ̂ := θm.

31


