Testing a Modern Inference Framework for POMP

Models: A Case Study Using Stochastic Volatility

Dae Hyun Kim

Supervisor Professor: Edward Ionides

Graduate Student Mentor: Aaron Abkemeier

Department of Statistics

University of Michigan

April 2025

Abstract

The pypomp package is a new Python-based library for modeling likelihood-based inference on
partially observed Markov process (POMP) models. Designed with the same goals as the R package
pomp, pypomp offers a flexible environment for modeling nonlinear, non-Gaussian dynamic systems
and supports both standard particle filtering and gradient-based estimation methods. By leveraging
modern computational tools such as automatic differentiation (AD) and Graphics Processing Unit
(GPU) acceleration via JAX, pypomp enables efficient inference for POMP models. We test and
validate the pypomp package by using the Heston stochastic volatility model as a test case. Through
this case study, we indicate the potential of pypomp to serve as a robust, extensible tool for scientific

modeling and the development of advanced inference algorithms.

Table of Contents

Abstract

Table of Contents

1 Introduction

2 Background
2.1 Partially Observed Markov Process Models
2.2 [lterated Filtering Algorithms
2.3 Automatic Differentiation Particle Filter,

2.4 Stochastic Volatility Models

3 Debugging pypomp
3.1 Original Testing o 0 e e e
3.2 IssueinOriginalRcode,
3.3 Initial Value Perturbation Issue in Iterative Filtering
3.4 Particle Depletion Assumption

3.5 Just-in-time Compilation Issue L L oo

4 TIterative Filtering in pypomp
4.1 Log-likelihood Trace
4.2 Parameter Estimate Trace

4.3 Particle Filter Log-likelihood

ii

A~ W W

)]

5 Automatic Differentiation Particle Filter in pypomp

6 Discussion

Reference

Appendix

A Algorithms

iii

23

24

26

29

29

Chapter 1. Introduction

Inference for dynamic systems governed by latent processes is a core process in modern statistical
science, with applications to various fields such as epidemiology, ecology, and finance. Partially ob-
served Markov process (POMP) models, also known as hidden Markov models or state space models
provide a principled framework for modeling such systems, in which a latent stochastic process drives
an observed time series. However, only partial and noisy observations of the true underlying state are
available in POMP models and general Maximum Likelihood Estimation (MLE) is often infeasible
due to the intractability of the likelihood, which involves integrating over high-dimensional latent state
spaces.

The improved Iterated Filtering (IF2) algorithm introduced by Ionides et al. [2015], suggests an
alternative to approach these challenges. IF2 uses the particle filter, also known as the sequential Monte
Carlo (SMC) method, to estimate parameters in POMP models and it iteratively refines parameter
estimates by introducing stochastic perturbations to the parameters, which facilitates convergence to
the MLE. IF2 is a plug-and-play method that enables parameter estimation without requiring analytic
expressions for transition densities, making it applicable to a wide variety of scientific models such as
epidemiology [King et al., 2008, Subramanian et al., 2021, Wheeler et al., 2024], ecology [Li et al.,
2024], and finance [Szczepocki, 2020], [Sun, 2024].

The R package pomp has provided a powerful framework including IF2 for likelihood-based in-
ference on POMP models [King et al., 2016], but with the growing use of Python in scientific comput-
ing, there is a need for a library with similar modeling capabilities that also support modern numerical
frameworks. In response to these needs, the pypomp package is being developed as a Python-based
analog to pomp, and it supports plug-and-play particle filtering and simulation for POMP models, but

it is also designed as a library for new algorithmic development. Key innovations in pypomp include

the use of automatic differentiation (AD) for efficient gradient computation and the integration of JAX
for just-in-time (JIT) compilation and GPU acceleration, enabling significant computational efficiency.
One of the central algorithmic contributions of pypomp is the Iterated Filtering with Automatic Dif-
ferentiation (IFAD) algorithm, introduced by Tan et al. [2024]. Unlike IF2, which relies on stochastic
perturbations for optimization, IFAD integrates gradient based updates through AD. This approach im-
proves computational efficiency by combining rapid exploration of the parameter space via stochastic
perturbations with precise gradient refinement. However, as pypomp is currently at early stages of
development, it requires rigorous testing to ensure its correctness, stability, and reproducibility across
applications.

We evaluate and test the current state of pypomp by using the Heston stochastic volatility model
as a diagnostic benchmark. Sun [2024] applied the IF2 algorithm using the pomp package in R to
estimate the parameters of the Heston stochastic volatility model and we attempted to replicate these
results using IF2 in pypomp. We then apply IFAD within the pypomp framework to estimate the same
model parameters, comparing the inference quality, stability, and computational efficiency. Rather than
focusing on improved inference for the Heston model itself, this research uses the model as a structured
test case for evaluating the behavior and correctness of pypomp.

Our contributions extend beyond benchmarking by helping pypomp to advance through rigorous
testing and debugging. Specifically, we identified several critical issues and provided concrete fixes
and analysis that contribute to the development of a robust, reliable inference in pypomp. As pypomp
is currently in pre-release, our numerical results indicate its potential for development and provide
insights as an innovative library for scientific inference and methodological research in dynamic sys-

tems.

Chapter 2. Background

2.1 Partially Observed Markov Process Models

A partially observed Markov process (POMP) model consists of an unobserved latent stochas-
tic process {X(¢), t > o} with noisy observations Yi,...,Yy collected at discrete observation times

t,...,ty. We assume:
* X(r) takes values in X C RIm(X),
* Y, takes values in Y C R4m(¥)
* 6 denotes a unknown parameter taking values in @ C R%4m(©)

Then, we define yy.n = Ym, Ym+1,- - - ,yn for integers m < n, and let X,, = X (¢,) be the latent state at
observation time #,. Thus, the full set of observations is denoted Y;.y. Therefore, the joint density of

the latent states and observations factorizes as:

N
Sxow Vi (Ko y1:8:0) = fxo (x0:0) T] Frui s (6 | %0—150) fi1x, (O | %03 6).

n=1
where:
* fx,(x0; @) is the initial state density,
* fx,|x,_, (Xn | X,—1;0) is the transition density of the latent process,
. fY,,| X, (yn | xn;0) is the measurement density connecting latent states to observations.

The data consist of observed realizations y;.,. The marginal density of the observations, fy, , (yi:n;0),

induces the likelihood function:

6(9) - fY]:N(y]kZN; 9)

Inference is typically focused on finding the MLE , which maximizes ¢ (6).

2.2 Iterated Filtering Algorithms

The key idea behind IF2 is to embed the estimation of parameters within a particle filter by in-
troducing small random perturbations to the parameters across time steps. These perturbations are
gradually reduced over multiple iterations, enabling the algorithm to stochastically explore the likeli-
hood surface and converge toward the MLE. Unlike its predecessor, IF1 introduced by Ionides et al.
[2011], which approximates the score function via conditional moments, IF2 performs an iterated
Bayes map, providing more robust numerical properties and convergence guarantees. (pseudocode in
Appendix A)

The particle filter is a foundational tool for inference in POMP models. It enables likelihood-based
inference [lonides et al., 2006] and Bayesian inference [Chopin et al., 2013], [Andrieu et al., 2010]
by providing Monte Carlo estimates of the likelihood function of observed data given model parame-
ters. Specifically, the particle filter approximates the likelihood by simulating a collection of possible
latent trajectories (particles) and sequentially weighting them according to how well they explain the
observed data. This approach is both flexible and powerful, particularly for models where the latent
dynamics are nonlinear and non-Gaussian [Arulampalam et al., 2002], [Kitagawa, 1987]. On top of
that, the particle filter produces an unbiased estimate of the likelihood [Doucet et al., 2001], making
it suitable for likelihood-based inference as it only requires accurate estimates for the likelihood. As
a result, IF2 builds directly on the particle filter to perform plug-and-play likelihood maximization,
without losing the statistical rigor of likelihood-based approaches.

The advantages of IF2 are its plug-and-play flexibility and stochastic robustness. Specifically, IF2
does not require the evaluation of transition densities, which allows it to be applied to models defined
via simulation and the iterative perturbation process helps avoid early convergence to the local optima,

which is common in complex likelihood surfaces. Also, the numerical results from Ionides et al. [2015]

indicate that IF2 can approximate the MLE arbitrarily well, under mild regularity conditions, as the
number of particles and iterations increase.

The original implementation of IF2 was developed in the R package pomp, but R presents limi-
tations in computational scalability, especially for models requiring GPU acceleration or AD. This is
where Python and pypomp become critically useful. The field of Python research has grown rapidly
due to its integration with high-performance libraries like JAX, as well as GPU-accelerated frame-
works. As pypomp leverages modern features such as JIT compilation and AD, it makes it particularly

well-suited for research using large-scale data.

2.3 Automatic Differentiation Particle Filter

Automatic differentiation (AD) is a computational process that enables the efficient and accurate
calculation of derivatives for functions implemented as computer programs. Also, AD computes exact
derivatives by systematically applying the chain rule to a sequence of elementary operations [Rall
and Corliss, 1996, Verma, 2000]. This capability is particularly powerful in fields such as machine
learning, numerical optimization, and scientific computing, where gradient based methods are used.

AD operates by breaking down a function into a finite sequence of elementary operations and

computing their derivatives step-by-step. AD can be implemented in two primary modes:
1. Forward Mode:

» Computes derivatives by propagating derivatives from the inputs to the outputs.

* Efficient for functions with few inputs and many outputs.
2. Reverse Mode:

» Computes derivatives by propagating gradients backwards from the outputs to the inputs.

* Efficient for functions with many inputs and few outputs.

Both modes rely on the chain rule to propagate derivatives through computation:

of _of 9y
ox dy OJx

5

Recent work has extended the use of AD to particle filtering and inference for POMP models. The
advantage of using AD is the gradient-based optimization for POMP models. Several papers have ex-
plored differentiable particle filters. For instance, Jonschkowski et al. [2018] introduced differentiable
filtering networks, and Naesseth et al. [2018] proposed variational inference approaches using AD to
optimize latent state models. However, these early approaches typically relied on low variance but
asymptotically biased estimators of the gradient, raising concerns about their long-term reliability and
statistical guarantees.

The Automatic Differentiation Particle Filter (ADPF), introduced by Tan [2023], overcomes these
issues by framing the particle filter as a differentiable computational graph. On top of that, Tan et al.
[2024] introduces the Measurement Off-Parameter with discount factor o (MOP-«) algorithm (pseu-
docode in Appendix A) that defines estimators for the gradient of the log-likelihood where the estima-
tors balance the tradeoff between bias and variance. At @ = 0, low-variance estimators can be highly
biased, while at o = 1, unbiased estimators tend to suffer from high Monte Carlo variability. MOP-¢
interpolates between these extremes, allowing users to refine the factor based on precision needs.

The Iterated Filtering with Automatic Differentiation (IFAD) algorithm (pseudocode in Appendix
A) introduced by Tan et al. [2024] represents another development of using ADPF. The IFAD algo-
rithm incorporates MOP-based gradient estimators into the structure of the IF2 algorithm. Like IF2,
IFAD executes a stochastic perturbation of parameters through a particle filter. However, instead of
fully relying on perturbations to update parameter estimates, IFAD supplements this process with
gradient-based updates using AD. This process enables IFAD to overcome the two core challenges of
IF2 such as Monte Carlo variability from noisy perturbation updates and slow convergence in high-

dimensional spaces.

2.4 Stochastic Volatility Models

Stochastic volatility models play a central role in financial modeling, where accurately capturing
the evolution of asset price variability is crucial for derivative pricing, risk management, and portfo-
lio allocation. Among these models, the Heston model is widely used due to its ability to represent

volatility as a mean-reverting stochastic process. However, parameter estimation for such models is

challenging because of the intractability of their likelihood functions and the presence of latent vari-
ables.

The estimation of parameters in stochastic volatility models remains a challenging problem, pri-
marily due to the computational complexity of the likelihood function, which involves high dimen-
sional integration. Various methods have been developed to address these challenges. Ait-Sahalia and
Kimmel [2007] developed a maximum likelihood estimation method that addresses these challenges
by employing closed-form approximations to the likelihood function. Chib et al. [2002] and Chib
et al. [2006] developed Markov Chain Monte Carlo (MCMC) algorithms for generalized stochastic
volatility models. However, these methods are computationally intensive for high dimensions.

The Heston model introduced by Heston [1993], one of the most widely used stochastic volatility
models includes a mean-reverting stochastic process for volatility, revealing the limitations of constant
volatility models. Specifically, it assumes that the variance of asset returns follows a Cox-Ingersoll-

Ross (CIR) process, expressed as:

dv, = k(0 —v,)dt + &\ /v, dW)

where
* v, is the instantaneous variance of the asset price at time ¢,
¢ K is the rate of mean reversion in variance,
* 0 is the long-term mean level of variance (lim,_. E[v;] = 0),

o & is the volatility of the volatility,

W is the Wiener process in the volatility.

Simultaneously, the asset price S; changes according to the following stochastic differential equation:

dSt - I.lSt dt + \/VtSt d‘/VtA

where:

* S, is the asset price at time 7,
* U is the average growth rate of the asset price
» W/ is the Wiener process in the asset price.

We define the correlation between W and WY as p:

pdt = E[dW;dW,"|

The Heston model provides a realistic framework for understanding how volatility changes over
time, enabling more accurate pricing of financial instruments and better investment decisions with
market uncertainty. Therefore, it is effective for testing and comparing parameter estimation algo-

rithms, such as the IF2 algorithm and the IFAD algorithm.

Chapter 3. Debugging pypomp

As part of evaluating IF2 and IFAD implementations in the pypomp package, we encountered
several numerical instabilities and inconsistencies while testing the Heston stochastic volatility model.
These issues motivated a deeper investigation into the underlying mechanics of pypomp and led to

insights critical to the future reliability of the package.

3.1 Original Testing

From the outset, the pypomp organization incorporated a system of unit tests designed to ensure
that core functionalities such as particle simulation, likelihood computation, and filtering are not bro-
ken when changes are made to the code. On top of that, unit tests provide early warnings if numerical
results shift unexpectedly due to subtle changes in implementation, such as modifications to random
number handling or model setup. This unit testing framework greatly aided the debugging process by
allowing us to localize problems quickly when inconsistencies were observed during benchmarking.
In addition to unit testing, IF2 and the particle filter in pypomp were evaluated through performance
benchmark tests called quantitative tests, or simply quant tests, named by the pypomp organization.
Unlike unit tests, quant tests measure the time to complete filtering and optimization tasks, the mem-
ory requirements during computation, and the number of iterations needed to achieve convergence
for a maximization algorithm. The quant tests were performed using the Linear Gaussian model and
the Dhaka cholera model introduced by King et al. [2008]. The Linear Gaussian model offers an ana-
Iytically tractable benchmark, where exact likelihoods and parameter estimates are known. Since the
Kalman filter provides the exact optimal inference for this model, deviations in pypomp results could

be precisely identified and quantified, making it an ideal diagnostic tool for basic functionality and

performance. The Dhaka cholera model represents a complex, nonlinear, epidemiological system. By
using this model, it allowed developers to assess scalability to large datasets, robustness under com-
plex latent dynamics with the particle filter and IF2 algorithm. Performance metrics from these two
models helped ensure that IF2 and particle filter in pypomp could handle both analytically simple and

scientifically realistic POMP models with reasonable computational resources.

3.2 Issue in Original R code

Before investigating issues within pypomp itself, we first carefully examined the R code provided
by Sun [2024] for the Heston stochastic volatility model. During this process, we identified a criti-
cal flaw that the latent volatility process V was not correctly updated over time inside the rprocess
simulation step.

In the correct implementation of the Heston model, volatility V must evolve dynamically according
to its stochastic differential equation. However, in the original R code, it did not update V from one
time step to the next. As a result, volatility remained constant or evolved incorrectly, fundamentally
altering the latent dynamics of the model. We corrected this by adding a proper stochastic update for

V at each time step within the rprocess function in R.

3.3 Initial Value Perturbation Issue in Iterative Filtering

The first major issue was discovered when we were analyzing parameter evolution during IF2 op-
timization. In the R pomp package, initial value parameters (IVPs) such as the initial state of the latent
process are only perturbed during the first filtering iteration, reflecting the fact that IVPs lose their
influence over time as the latent process evolves [lonides et al., 2015], [King et al., 2016]. Perturbing
IVPs throughout the entire optimization adds unnecessary noise and destabilizes the inference.

By contrast, pypomp initially perturbed IVPs continuously across all iterations as it did not yet
distinguish IVPs from other parameters in the filtering process. This behavior reduced optimization
performance and introduced instability to our numerical results, as perturbations on IVPs continued

to introduce variability into later stages of optimization where the IVPs should have been forgotten by

10

the model dynamics.

This oversight can be understood by considering the origins of the pypomp codebase. The initial
pypomp development was built based on code supporting the experiments in Tan et al. [2024], where
the models studied either avoided the IVP issue or were not sensitive to it. In that experimental context,
continuous IVP perturbation did not create critical problems. However, pypomp aims for a more
general and flexible scope, supporting a wide range of POMP models such as the Heston stochastic
volatility model, where IVPs play a substantial role in early dynamics but diminish later. The broader
generalization intended for pypomp exposed the need to properly handle IVPs.

It is common during software development that bugs emerge when generalizing code beyond its
original use case. In this case, what worked for specific research applications in Tan et al. [2024]
needed further refinement to support a general plug-and-play POMP modeling framework. After di-
agnosing this issue during our testing, we reported the misbehavior, and it was subsequently corrected
by Jun Chen, one of the founding developers of the pypomp organization.

Even after the IVPs issue was resolved, the log-likelihood estimates obtained using 1,000 particles
were significantly below the anticipated value (around 11849, based on Sun [2024]’s results) and
often produced errors. However, when using 10,000 particles, the estimated log-likelihood reached
the expected value and errors disappeared, indicating that other numerical stability issues also needed

to be addressed.

3.4 Particle Depletion Assumption

This pattern suggested the presence of particle depletion, also known as particle degeneracy, a
common problem in particle filter algorithms. Particle depletion occurs when, after resampling, most
particles are either discarded or receive extremely low weights [Daum and Huang, 2011]. This leads to
a lack of diversity in the particle population and log-likelihood estimates become biased or undefined
as likelihood estimates are computed from weighted particles [Gustafsson et al., 2002]. Also, when
estimating parameters in IF2, if particles get depleted early, the algorithm struggles to explore dif-
ferent parameter values, resulting in suboptimal estimates. To mitigate particle depletion, increasing

the number of particles reduces variance and prevents all weights from collapsing, so the numerical

11

stability gets improved. As the characteristics of particle depletion correspond to the situations that we
were experiencing, it supported our assumptions.

To diagnose this, we analyzed the conditional log-likelihoods and particle traces of parameters.
In a POMP model, the observations are random, and we want to compute the likelihood of observing
the data, given a parameter 6. Instead of looking at the full likelihood at once, we break it down
sequentially. At each time point #, the conditional likelihood is the probability density of the current
observation, given all previous observations. In other words, the conditional log-likelihood is the value
of the density of Y () | Y (t1),...,Y (tx—1) evaluated at Y () = y; where Y (#;) is the observable process,
and yy, is the data, at time #;.

Thus, the conditional log-likelihood at time # is

G(8) =log f[Y (1) =yi | Y (1) =¥1,. .. Y (1) = Y1)

where f is the probability density above.

If particles are depleted at some time #;, meaning most particle weights are near 0 except for very
few, then the sum of the weights becomes very small. This will affect the conditional log-likelihood
/x(0) to be highly negative and it will show a large negative spike in the plot. In contrast, when
particles are not struggling from depletion, ¢;(6) behaves smoothly without huge fluctuations.

For this analysis, at each IF2 iteration, we recorded the conditional log-likelihood at every obser-
vation time #;. Then, for each time index k, we averaged the conditional log-likelihood values across
all IF2 iterations. Averaging across iterations helps smooth out random Monte Carlo fluctuations and

indicates systematic patterns in the optimization process.

12

Average Conditional Log-Likelihood

0 1000 2000 3000
Time Index (t)

Figure 3.1: Average conditional log-likelihood over time

Figure 3.1 represents the time series of the average conditional log-likelihood over the full dataset
in an one repetition. The plot shows that the conditional log-likelihood values fluctuate over time, as
expected due to the stochastic nature of the optimization process and variability in particle weights.
Some downward excursions are visible, but none of the conditional log-likelihood values fall to levels
that would indicate a particle depletion issue. In other words, the lower excursions do not suggest that
particle weights collapsed or that the particle population failed to support likelihood evaluation at any
time point.

During IF2, the parameters are perturbed at each time point #; slightly and each particle carries a
slightly perturbed parameter Gk(i). The particle traces of parameters record Gk(i) for each particle i over
each time #;, so tracking particle traces is helpful to analyze whether parameters collapse (particles
become identical), or the particle diversity is maintained. Thus, if a particle depletion occurred, then
most particle traces will collapse to a few lines and the spread in parameter values will be lost.

By inspecting these traces, we attempted to localize potential failures at particular time points.

13

However, no obvious collapse or degeneration was observed across the traces, suggesting the problem

might lie elsewhere.

3.5 Just-in-time Compilation Issue

A deeper debugging and investigation revealed that the root cause of instability and errors was
not particle depletion, but rather faulty random number generation during JIT compilation. Specif-
ically, random perturbations for particles were originally drawn using np.random.normal, a NumPy
function. JAX’s JIT compilation requires that all random number generations be explicitly managed
via jax.random.PRNGKey because JAX uses pure functional programming while NumPy does not.
Previously, keeping keys from being split and mixing np.random with JIT-compiled functions led
to uncontrolled randomness. In other words, the same random values were reused repeatedly across
particles and iterations, corrupting the filtering and optimization process and producing errors in like-
lihood estimations. After using JAX random number generation such as jax.random.normal rather
than np.random and ensuring that keys were explicitly split, the random perturbations became truly

random, the errors disappeared, and likelihood estimates stabilized.

14

Chapter 4. Iterative Filtering in pypomp

Sun [2024] applied the IF2 algorithm implemented in the R package pomp to estimate the pa-
rameters of the Heston stochastic volatility model using daily Standard & Poor’s 500 index (S&P500)
log-return data from 2010 to 2024. His study indicated the ability of IF2 to recover volatility dynamics
consistent with market benchmarks like the VIX index, and showed the model significantly outper-
formed classical GARCH-based benchmarks in terms of log-likelihood. His research also conducted
profile likelihood estimation on each parameter, initially profiling over u, and subsequently fixing u at
its smoothed profile MLE to improve optimization stability. In our study, we sought to replicate Sun’s
results using the pypomp package. While Sun performed profiling to construct confidence intervals,
we did not require profiling of 1 in our setting since our goal was not to conduct inference but to test

and validate the numerical behavior of the pypomp IF2 implementation.

4.1 Log-likelihood Trace

The log-likelihood trace records the IF2 log-likelihood estimate at each iteration. It is computed
using perturbed parameters and is inherently noisy due to stochastic perturbations during optimization.
Nonetheless, the overall trend is expected to increase (or equivalently, the negative log-likelihood
should decrease) as the algorithm refines parameter estimates.

Tracking the log-likelihood trace serves as an important internal diagnostic for the IF2 optimiza-
tion process. By analyzing the evolution of log-likelihood values across iterations, we can assess
whether IF2 is making consistent progress toward better fitting parameter regions, identify conver-
gence behavior, and detect potential issues such as instability during optimization.

To evaluate the internal optimization process of both pomp and pypomp, we compared the log-

15

likelihood values estimated at each iteration of the IF2 algorithm. To ensure that differences in start-
ing points did not affect the comparison, we sampled and stored 120 initial parameter sets from Sun
[2024]’s model using pomp and then used exactly the same starting values when running IF2 opti-
mization in our model using pypomp. This guarantees that IF2 of both pomp and pypomp implemen-
tations began from identical initial conditions, allowing us to attribute any differences to algorithmic

behavior rather than random initial variability.

11850

11800

11750

11700

Log-Likelihood

11650

11600

0 50 100 150 200
IF2 lteration

Package . pomp . pypomp

Figure 4.1: IF2 log-likelihood trace across iterations

Each shaded ribbon in Figure 4.1 represents the 10th—-90th percentile range of log-likelihood val-
ues across 120 IF2 replicates at each iteration. The values were computed using perturbed parameters
at each IF2 iteration and represent noisy estimates of model fit throughout optimization. Although
stochastic, the log-likelihood trajectories are expected to improve across iterations as the algorithm
converges toward high-likelihood regions. The results show that broadly similar convergence behav-
ior in both implementations, with pypomp showing noticeably lower variance in its log-likelihood

traces compared to pomp. This suggests that pypomp is not exploring the parameter space as exten-

16

sively as pomp. Thus, while IF2 optimization is functioning and improving log-likelihoods in both
packages, there are meaningful differences between the two implementations. Minor differences are
always expected when comparing independently developed codebases in different languages, but our
findings suggest that pypomp’s IF2 implementation is different from pomp in ways that affect pa-

rameter exploration and optimization dynamics and hence could affect the final parameter estimates.

4.2 Parameter Estimate Trace

The parameter estimation traces show the evolution of each parameter across IF2 iterations. We
average across particles at each iteration to visualize the path of optimization. As parameters are
iteratively perturbed and adapted toward the MLE, parameter estimation traces are important in the
IF2 process. With this trace, we can analyze whether parameter estimates converge or diverge and
whether they exhibit similar dynamics in pomp and pypomp. Also, if both implementations use the
same algorithmic parameter values, such as number of particles, iterations, and repetitions, then their
traces should be similar. This implies that parameter estimation traces provide qualitative assurance
between pomp and pypomp.

To assess the consistency of the pomp implementation and the pypomp implementation, we com-

pared the evolution of parameter estimations across IF2 iterations.

17

-2.0
-2.5
-3.0
-3.5
-4.0
-4.5

-10

-1

0 50 100 150 200 0 50 100 150 200 100 150 200

-8.75

Transformed Parameter Value

-9.00
-9.25
-9.50

-9.75
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
IF2 Iteration

Package . pypomp . pomp

Figure 4.2: Parameter estimates across IF2 iterations

Figure 4.2 displays quantile ribbon plots showing the evolution of parameter estimates over IF2
iterations across pomp and pypomp implementations. For each parameter, we show the middle 80%
(10th to 90th percentile) of transformed parameter values at each iteration. The parameters are trans-
formed to the estimation scale such as log-transformed for positive parameters (U, x, 6, &, Vp) and
logit-transformed for the correlation parameter (p). This transformation ensures a reasonable compar-
ison since both implementations optimize in transformed space.

Across all six parameters, we observe similar convergence behavior between the two implemen-
tations. Both implementations stabilize similarly to transformed values, indicating agreement in the
inferred parameter regions but still there are noticeable differences in the median trajectories.

Then, we assess whether the two implementations arrive at consistent parameter estimate.

18

” L]
-3.1 v !w»; -1.8 ® go
3 -
® e -10.0 . 5
-3.2 29, 3 ¢ & o
) X) 20 &8 *.3°
.33 & & ® -12.5 ®.0 [ele™) o & ¢
o zﬂ% Q@? %6 ¢ o S
E a4 7 ngjg @§0§ @ ‘g;
pi @ S ° 22 oS - Fps
gos felee :) s ® S
@ o 175 X ® o s
IS Package
o pypomp pomp pypomp pomp pypomp pomp
a © pypomp
9 6 Vo E pomp
[0)
£ °, o S 9 ‘
= 2 @20 e o!
‘g -9.0 %}@ X\ -9 ° o%" p 0? -
() & o
c ® @ s g
T w > ¢ -6.1 L
S 01 %& J TN 0 &0 %g?ﬁg 9;9' %
' () o) O)
S @ o o S® L] ® 8
SE® 9
9.2 3 SO) | SR S
& -1 & 2 ®° 6.2 e
\‘ [}
@
-9.3 @%? ad
& ° e
-12
pypomp pomp pypomp pomp pypomp pomp
Parameter

Figure 4.3: Final IF2 parameter estimates

Figure 4.3 displays the transformed parameter estimates at the final IF2 iteration from 120 inde-
pendent IF2 runs in both pomp and pypomp. Each point represents the final parameter estimate from
one IF2 replicate, transformed to the estimation scale (log or logit). To enhance the interpretability of
parameter comparison, extreme parameter estimates were filtered out prior to visualization. For each
parameter, only parameter estimates between the 10th and 90th percentiles are shown, to focus on the
central distribution and reduce the influence of extreme outliers.

Across parameters, the distributions of final estimates are similarly aligned between the two im-
plementations. Slight differences in spread and central tendency appear in the parameters and these
results indicate that while the two implementations do not produce identical traces, they broadly agree

in terms of convergence region and variability.

19

4.3 Particle Filter Log-likelihood

After IF2 finishes, the algorithm uses a particle filter with particles and no perturbation to esti-
mate the log-likelihood at the final estimated parameters. For each IF2 run, the algorithm computes
the average and standard deviation of estimated log-likelihoods over particle filter replicates. The av-
erage log-likelihood assesses the fit quality of the estimated parameters, and the standard deviation
gives a sense of Monte Carlo variability. With these results, given the same number of particles and
datasets, IF2 algorithm in both pomp and pypomp yield likelihood estimates with similar accuracy
and variability.

To compare the model fit quality across implementations, we examined the log-likelihood values

obtained by applying a particle filter to the final parameter estimates from each IF2 run.

11850
ge)
o]
(o]
<
2 11840
-
(@)]
o
-) 00 °
b)
® o .
o
(<]
11830
(<]
(]
()
pomp pypomp

Package

Figure 4.4: Particle filter log-likelihood at IF2 final estimates(outliers excluded)

Figure 4.4 shows a comparison of the log-likelihoods from particle filter evaluations at final IF2

estimates across 120 replicates. Each point represents the mean log-likelihood across iterations for one

20

IF2 replicate. While pomp shows a slightly higher median and broader spread with 11850.74 for the
highest log-likelihood, pypomp shows lower median and tighter spread with 11847.34 for the highest
log-likelihood.

To verify that particle filter in pypomp matches the particle filter implementation in pomp, we
conducted a Monte Carlo-based comparison. We used the same stochastic volatility model and the
MLE for each parameter obtained from pomp to evaluate the mean log-likelihood using the standard
particle filter without parameter perturbation across 24 replicates for both pypomp and pomp. The
mean log-likelihood estimated with the MLE in pomp was 11850.74 and the mean log-likelihood
estimated with the MLE in pypomp was 11848.29 with standard deviation 2.78.

These preliminary results suggested that the particle filter in pypomp approximately reproduced
the behavior of pomp within expected Monte Carlo variation. However, comparing only the means of
the log-likelihood estimates is insufficient to fully establish correspondence between the two imple-
mentations.

To provide a more rigorous comparison, we generated 1,000 independent particle filter log-likelihood
estimates from each package without parameter perturbation, using the same MLE parameter values.
To increase the interpretability of the results, we visualized the results using violin plots overlaid with
boxplots. This allowed us to examine the full distribution of log-likelihood estimates and assess the

density, variability, and central tendency in a much more statistically robust way.

21

11855 | 1

11850

Log-Likelihood

11845

11840

pomp pypomp
Package

Figure 4.5: Particle filter log-likelihood at MLE

In Figure 4.5, each violin shape shows the estimated density of log-likelihood values, and the
embedded boxplot summarizes the interquartile range and median, and the jittered points show indi-
vidual Monte Carlo replicates. The plot demonstrates that the particle filter in both pomp and pypomp
produce highly overlapping distributions of log-likelihood values, and the medians and interquartile
ranges are nearly identical between the two implementations. In addition, the distribution shapes are
symmetric and centered around similar values, with minor expected Monte Carlo fluctuations.

Thus, this comparison strongly reinforces the conclusion that the particle filter implementation of
pypomp accurately replicates the behavior of the particle filter in pomp, up to the expected variability
due to stochastic simulation. Any observed discrepancies between pypomp and pomp in IF2 results
should therefore be attributed to differences in the parameter perturbation and optimization steps of

the IF2 process, rather than to differences in the underlying particle filter algorithm.

22

Chapter 5. Automatic Differentiation Particle Filter in pypomp

Tan et al. [2024] demonstrate that IFAD outperforms both IF2 and MOP algorithms when applied
individually. IF2 alone is prone to slow convergence near the optimum due to diminishing perturbation
sizes and MOP alone is sensitive to local minima and saddle points in non-convex likelihood surfaces.
The strengths of IFAD are a warm start using IF2 to locate a neighborhood near the MLE and a
refinement that uses gradients derived from the MOP-o estimator to perform gradient ascent with
AD. This hybrid approach helps IFAD to overcome two critical limitations of IF2 and MOP.

Using the cholera transmission model developed for Dhaka, Bangladesh King et al. [2008], IFAD
found log-likelihood values significantly better than those reported using IF2 Ionides et al. [2015].
Notably, IFAD reaches the MLE with fewer iterations and without the assistance of likelihood profil-
ing. These results indicate IFAD’s numerical efficiency and statistical accuracy, and its potential as an
innovative plug-and-play method for statistical inference in POMP models.

Encouraged by the numerical efficiency and statistical accuracy of IFAD, we attempted to ana-
lyze its performance implemented in pypomp using the Heston stochastic volatility model from Sun
[2024]. However, during the implementation and testing of IFAD and MOP in pypomp, we encoun-
tered persistent numerical errors and exploding values. Despite initializing the algorithm with plau-
sible parameter values and a reasonable number of particles, errors in gradients and log-likelihoods
frequently occurred during the optimization after the first forward mode of AD, suggesting issues
within the backward mode of AD execution. As these instabilities do not occur in IF2 implementa-
tion of pypomp, it reinforces the conclusion that the source of instability comes from the gradient

refinement in MOP implemented in pypomp.

23

Chapter 6. Discussion

Our research contributes to the development, testing, and validation of the early-stage pypomp
package. Using the Heston stochastic volatility model as a test case, we examined the behavior and
correctness of the IF2 and IFAD algorithms in pypomp, comparing results against the pomp pack-
age. For IF2, we demonstrated that pypomp implementation successfully produces log-likelihood
estimates and parameter traces that are consistent with the general behavior of IF2. Particle filter pro-
cess appears to be stable, and likelihood estimates generally improve across iterations, indicating that
the core logic of particle filtering and optimization is in place. Despite these promising results, we
identified several important discrepancies and design issues that will require attention to ensure that
pypomp becomes a fully robust scientific tool.

Although the particle filter behavior matches expectations, there remains meaningful differences
between IF2 results from pypomp and pomp, particularly in log-likelihood traces and parameter es-
timation across iterations. Based on diagnostic comparisons, we conclude that these differences are
not due to the particle filter itself, but rather arise from differences in the IF2 perturbation process.
Specifically, lower variance in log-likelihood traces of pypomp, compared to pomp, suggests that
pypomp may not be exploring parameter space as much as it intended. In addition, a deeper examina-
tion of handling random number generation under JAX’s JIT compilation is essential, and PRNG key
management must be verified at every stochastic step to ensure true randomness and reproducibility.

For IFAD, although the algorithm is theoretically promising and has shown success in recent
research, we encountered persistent numerical instabilities when attempting to apply IFAD to the
Heston model in pypomp. These issues include errors in gradients and log-likelihoods, and failures in
the optimization after the initial iteration. These issues indicate that while IFAD is a prominent method,

the current pypomp implementation should ensure differentiability of the computational graph across

24

all IFAD components and manage numerical stability in weight scaling and normalization, especially
in the MOP-« gradient estimators. Beyond debugging, IFAD must be evaluated through quant tests to
assess its scalability and practical utility for statistical inference.

Beyond algorithmic issues, several important design considerations were identified during this
research. Although the IVP perturbation behavior was corrected during debugging, the fix currently
exists in a separate branch and is not yet fully incorporated into the main pypomp IF2 function. Formal
integration is necessary to ensure consistent behavior across models.

On top of that, pypomp currently does not directly provide access to conditional log-likelihoods at
each time point within the particle filter. Conditional log-likelihood traces are extremely valuable for
model validation and debugging, allowing researchers to identify specific times where model fit deteri-
orates or where particle depletion occurs. Adding this feature would greatly enhance the transparency
and diagnostic functions of pypomp.

At present, pypomp supports IF2, MOP-¢, and IFAD algorithms but other algorithms available
in R pomp such as Particle Markov Chain Metropolis-Hastings algorithm [Andrieu et al., 2010], and
Ensemble Kalman filters [Evensen, 2003] are not yet implemented. Extending pypomp to include
these algorithms would enable broader applicability and make the package a forward compatibility

with R pomp.

25

Reference

Yacine Ait-Sahalia and Robert Kimmel. Maximum likelihood estimation of stochastic volatility mod-

els. Journal of financial economics, 83(2):413—-452, 2007.

Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. Particle markov chain monte carlo
methods. Journal of the Royal Statistical Society Series B: Statistical Methodology, 72(3):269—
342, 2010.

M Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A tutorial on particle filters
for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on signal processing, 50

(2):174-188, 2002.

Siddhartha Chib, Federico Nardari, and Neil Shephard. Markov chain Monte Carlo methods for

stochastic volatility models. Journal of Econometrics, 108(2):281-316, 2002.

Siddhartha Chib, Federico Nardari, and Neil Shephard. Analysis of high dimensional multivariate

stochastic volatility models. Journal of Econometrics, 134(2):341-371, 2006.

Nicolas Chopin, Pierre E Jacob, and Omiros Papaspiliopoulos. SMC2: an efficient algorithm for se-
quential analysis of state space models. Journal of the Royal Statistical Society Series B: Statistical

Methodology, 75(3):397-426, 2013.

Fred Daum and Jim Huang. Particle degeneracy: root cause and solution. In Signal Processing, Sensor

Fusion, and Target Recognition XX, volume 8050, pages 367-377. SPIE, 2011.

Arnaud Doucet, Nando De Freitas, Neil James Gordon, et al. Sequential Monte Carlo methods in

practice, volume 1. Springer, 2001.

26

Geir Evensen. The ensemble Kalman filter: Theoretical formulation and practical implementation.

Ocean dynamics, 53:343-367, 2003.

Fredrik Gustafsson, Fredrik Gunnarsson, Niclas Bergman, Urban Forssell, Jonas Jansson, Rickard
Karlsson, and P-J Nordlund. Particle filters for positioning, navigation, and tracking. IEEFE Trans-

actions on signal processing, 50(2):425-437, 2002.

Steven L Heston. A closed-form solution for options with stochastic volatility with applications to

bond and currency options. The review of financial studies, 6(2):327-343, 1993.

Edward L Ionides, Carles Bretd, and Aaron A King. Inference for nonlinear dynamical systems.

Proceedings of the National Academy of Sciences, 103(49):18438-18443, 2006.

Edward L Ionides, Anindya Bhadra, Yves Atchadé, and Aaron King. Iterated filtering. The Annals of
Statistics, pages 1776-1802, 2011.

Edward L Ionides, Dao Nguyen, Yves Atchadé, Stilian Stoev, and Aaron A King. Inference for
dynamic and latent variable models via iterated, perturbed Bayes maps. Proceedings of the National

Academy of Sciences, 112(3):719-724, 2015.

Rico Jonschkowski, Divyam Rastogi, and Oliver Brock. Differentiable particle filters: End-to-end

learning with algorithmic priors. arXiv preprint arXiv:1805.11122, 2018.

Aaron A King, Edward L Ionides, Mercedes Pascual, and Menno J Bouma. Inapparent infections and

cholera dynamics. Nature, 454(7206):877-880, 2008.

Aaron A King, Dao Nguyen, and Edward L Ionides. Statistical inference for partially observed Markov

processes via the R package pomp. Journal of Statistical Software, 69:1-43, 2016.

Genshiro Kitagawa. Non-Gaussian State-Space Modeling of Nonstationary Time Series. Journal of

the American statistical association, 82(400):1032-1041, 1987.

Jifan Li, Edward L Ionides, Aaron A King, Mercedes Pascual, and Ning Ning. Inference on spatiotem-
poral dynamics for coupled biological populations. Journal of the Royal Society Interface, 21(216):

20240217, 2024.

27

Christian Naesseth, Scott Linderman, Rajesh Ranganath, and David Blei. Variational Sequential
Monte Carlo. In International conference on artificial intelligence and statistics, pages 968-977.

PMLR, 2018.

Louis B Rall and George F Corliss. An introduction to automatic differentiation. Computational

Differentiation: Techniques, Applications, and Tools, 89:1-18, 1996.

Rahul Subramanian, Qixin He, and Mercedes Pascual. Quantifying asymptomatic infection and trans-
mission of COVID-19 in New York City using observed cases, serology, and testing capacity. Pro-

ceedings of the National Academy of Sciences, 118(9):e2019716118, 2021.

Weizhe Sun. Model Based Inference of Stochastic Volatility via Iterated Filtering. Undergraduate

Honors Thesis, 2024.

Piotr Szczepocki. Application of iterated filtering to stochastic volatility models based on non-

Gaussian Ornstein-Uhlenbeck process. Statistics in Transition. New Series, 21(2):173-187, 2020.

Kevin Tan. Differentiable Plug-And-Play Particle Filtering. Undergraduate Honors Thesis, 2023.

Kevin Tan, Giles Hooker, and Edward L Ionides. Accelerated Inference for Partially Observed Markov

Processes using Automatic Differentiation. arXiv preprint arXiv:2407.03085, 2024.

Arun Verma. An introduction to automatic differentiation. Current Science, pages 804—-807, 2000.

Jesse Wheeler, AnnaFElaine Rosengart, Zhuoxun Jiang, Kevin Tan, Noah Treutle, and Edward L Ion-
ides. Informing policy via dynamic models: Cholera in Haiti. PLOS Computational Biology, 20(4):
e1012032, 2024.

28

Appendix A. Algorithms

Algorithm 1 IF2

input: Simulator for fx, (xo;)

Simulator for fx x, , (Xn | X,-1;0),nin 1: N

Evaluator for fy,x, (va | X:;6), nin 1: N

Data, yj.5

Number of iterations, M

Number of particles, J

Initial parameter swarm, {@?, jinl:J}

Perturbation density, 4,(0 | ¢;0),nin 1 : N

Perturbation sequence, G1.)

output: Final parameter swarm, {@1/” ,jinl:J}
I: forminl: M do

2: @g:;” ho(6 | @775 0,) for jin1:J

3: Xg’. NfXO(xo,G) ") for jin1:J

4 for ninl:N do

5: O, ~ hy(0 | ©," ::0,,) for jin1:J

6: X:] ~ fx, %, (Xn \XF"IZJ;® "™ for jinl:J
7: Wy j :fYn‘Xn(yn |X:;",®Pm) forjinl:J
8: Draw ki with P(k; = i) = wy; Y Wil
9: ®5;" @2’,? andXFm —X for] 1n1 J
10: end for

11: Set@’;?:@f,’:? for jinl:J

12: end for

The main elements of IF2 are:

* Particles: A collection of J Monte Carlo samples approximating the latent and parameter pro-

cesses.
* Iterations: A sequence of M optimization loops indexed by m.
* Perturbation density /,(0 | ¢;0): A probability density introducing controlled stochastic per-

29

turbations to parameters at each time step n, with scale ©.
* Prediction step: Evolving particles forward through the latent process.

* Filtering step: Weighting particles by how well they explain the observed data, followed by

resampling.
The following notation is used:

. ®5;" Parameter vector for the jth particle at time n after filtering at iteration m.

65’?: Parameter vector for the jth particle at time n after prediction at iteration m.

Xf ’;" Latent state for the jth particle at time n after filtering at iteration .
. X,'Z jm Latent state for the jth particle at time » after prediction at iteration m.

* ki.;: Resampling indices, drawn multinomially based on particle weights at each filtering step.

30

Algorithm 2 MOP-«

Input: Number of particles J, timesteps N, measurement model fy x (v, | X,6), simulator
process, (- | x,; 0), evaluation parameter 6, baseline parameter ¢, seed m.

First pass: Set 0 = ¢ and fix o, yielding Xn R ,XFj‘p, gﬁ e

Second pass: Fix o, and filter at 8 # ¢:

Initialize particles X ~ fx, (+;0), weights WOF:;, =1

:forn=1,...,N:do

Accumulate discounted weights, who — (WFﬂ)a.

1

2 nj — Wnllj

3 Simulate process model, X,f’je ~ process,, (| X Fel Jb)
4 Measurement density, g . = Trx,On | Xf je’ 0).

5: ComputeLBea—ZJ 1gn,wn]/Z

6 Conditional likelihood under ¢, L= 7 Zm 1 gn me

7 Select resampling indices ky.; with P(k; = m) o< gmm.
8

Obtain resampled particles X ’9 = X:., l?, ,

9: Calculate corrected weights wF]6 5i2j gff k; / gﬁ ke
10: Compute =g J n,j /Zle wf:?.
11: end for
Return: likelihood estimate .2(0) = [T_, Ly 0% or 2(6) = N 2o 0% " filtering distributions

F.06 F.6\\N,J
{7 Wi) =1

Algorithm 3 IFAD
Input: Number of particles J, timesteps N, IF2 and MOP-« cooling schedules 7,,,, MOP-¢¢ discount-
ing parameter o, 6y, m = 0.
Run initial IF2 search under cooling schedule 7, to obtain {®;, j = 1,...,J}, set 6, := }Zfz 10
While procedure not converged:

1: Run MOP-q Algorithm to obtain £(6,,).

2: Set g(6,,) := Vg (—£(8,,)), and consider any H (6,,) such that Ay (H(6,,)) > c.

3: Update 0,11 := 6, — N (H(60)) '(8), m:=m+ 1.
Return 6 := 6,..

31

