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Abstract

At the onset of an epidemic, it is common for disease intervention methods to
be evaluated for efficacy via mathematical modelling prior to deployment. Model
specification and construction must be informed by both the case data of the disease
under study and the scientific principles underlying its transmission. For any given
epidemic, there are countless possible models that can be formulated and used for
motivating public health action, thus underscoring the importance of model criticism
and comparison. Although there may be many models that vary in implementation,
complexity, and mechanistic and stochastic elements, it is imperative that models with
the best available forecasting accuracy be used for informing policy in real-life health
crises. To exemplify this point we use the 2010-2019 cholera epidemic in Haiti as a
case study. Through the analysis of three different stochastic models, we show the
wide variability in model quality and forecasting that can result from minor changes
in model specification and calibration.

All materials and code can be downloaded at https://github.com/aerosengart/haiti_

thesis.
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1 Introduction

In late October of 2010, the first cases of cholera in over one hundred years were observed

in Haiti. Within the next several weeks, case reports skyrocketed into the thousands and

reached over 230,000 by mid-February of the next year [24, 3]. Exacerbated by the poor

water infrastructure and the fact that the highly virulent strain introduced to the nation, O1

biotype El Tor serotype Ogawa, had associated antibiotic resistance, the threat the disease

posed to public health was large [24]. Presently, there have been well over 800,000 cumulative

cases and almost 10,000 deaths in Haiti since the onset of the epidemic [1]. Unfortunately,

the opportunity for using vaccination to prevent cholera from becoming a chronic problem

has passed, but cholera’s decade-long presence in Haiti has provided much more data for the

study of the progression of cholera in a population. Therefore, continued efforts in modelling

this epidemiological event may prove instructive in responses to future outbreaks.

There was a multitude of opinions on the best and most effective course of action to take to

mitigate cholera’s spread at the start of the epidemic and throughout the disease’s continued

presence in Haiti. Vaccination was considered a promising response as two killed oral cholera

vaccines (OCVs) were available at the time. However, the duration and level of protection

acquired by these vaccines is dependent upon dosage, national coverage, and the age of the

vaccine recipient as young children shed immunity faster than adults [3]. Questions continue

to arise when considering the logistics of vaccine distribution and administration: When is the

best time to begin vaccination? Should vaccine delivery be prioritized according to location-

based risk? How many vaccines must be administered for the optimal amount of protection,

and are there enough vaccines currently available for this? With all of these questions

in mind, it was, and still is, challenging to determine whether investment in widespread

vaccination would be an effective measure against cholera.

One means by which to overcome these uncertainties is epidemiological modelling, a

powerful method of analysis of disease dynamics that can be used to inform vaccination

policy and public health decision-making. In December of 2010, the CDC’s modelling study

predicted that the impact of vaccination would be relatively minor with the number of

vaccines available at the time [6]. However, a later study by Chao et al. found that even

relatively low vaccination coverage (around 30% of the population) was effective at controlling

the spread of the disease if the administration was informed by the relative risk and exposure

of a given community [3]. Fung et al. also showed that OCVs used in conjunction with

improved sanitation practices and water infrastructure was most effective at reducing the
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number of cases [8]. This paper provides an analysis of a state-space model proposed by

Elizabeth C. Lee, Andrew S. Azman, and Justin Lessler of the Johns Hopkins Bloomberg

School of Public Health. We begin with an analysis of the methods and results of Lee et

al. and go on to propose improvements to its implementation. Through this case study,

we aim to exhibit the dependence of the utility and quality of simulation-based inference in

epidemiological contexts upon model examination and refinement.

2 Background

In many epidemiological settings, statistical modelling can be of immense use in mo-

tivating public health decision-making. For example, modelling reported cases of a given

infectious disease can help inform the subsequent actions taken to mitigate the disease’s

spread. Due to the inherent randomness and complexity of population dynamics, there are

numerous different methods for modelling disease, all of which have advantages and dis-

advantages. Yet the contributions of epidemiological models to our understanding of how

infectious diseases evolve in a population are of high value, and it is worth tackling the

challenge of developing a good and useful model.

It is well established that state-space models are appropriate and effective models when

studying environmental and biological processes. At its core, a state-space model has two

components: an unobserved state process and a dependent observation process [11]. The

ability to use a state-space model to inform policy and public action depends upon the

model’s quality, which itself is dependent upon the ease of statistical inference with respect

to the model’s parameters. Fortunately several methods have been developed to facilitate

estimation of unknown parameter values, one of which is maximum likelihood via iterated

filtering (MIF) proposed by Ionides et al., a variant of which is addressed in section 2.3 [10].

Compartment models are another standard tool for modelling infectious diseases. By di-

viding a population into compartments, for example as (S)usceptible, (I)nfectious, (R)ecovered

in the standard SIR compartment model, the spread of a disease can be described with much

more specificity because attention is given to all stages of host infection. However, it is nearly

impossible to know how many individuals populate a compartment or are transitioning be-

tween compartments at a given time. To overcome this uncertainty, compartment models can

be coupled with state-space models to form a comprehensive representation of a disease’s

progression in which parameters can be more easily estimated via inference methods for

state-space models. In the next few sections, we provide a brief overview of the foundational
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concepts needed to understand these models.

2.1 Time Series and Markov Processes

Consider a sequence of N time points, t1:N = {t1, t2, . . . , tN}, and a sequence of N

observations made at each time point, y1:N = {yt1 , yt2 , . . . , ytN}. We call Y1:N a time series

model with jointly defined random variables Yn, ∀n ∈ 1 : N , and we can conceive of the

data, y1:N , as one realization of Y1:N [19].

We then describe a time series model, X1:N , where Xn = X(tn) is a random process at

time n, ∀n ∈ 1 : N . Should this time series model satisfy the condition that its state at

time n+ 1 is conditional only on its state at time n, X1:N is called a Markov process model.

Mathematically, this can be represented as the following equation stating that the conditional

density of the process Xn given the processes X1:n−1 is equivalent to the conditional density

given only the process Xn−1 [7]:

fXn|X1:n−1(xn|x1:n−1) = fX|Xn−1(xn|xn−1) (1)

2.2 Partially Observed Markov Processes

Often the details of the mechanisms underlying the evolution of a natural system are

unknown. In epidemiology, the exact number of individuals exposed to disease at a given

time is usually unknown. We can work around the issue of missing information using partially

observed Markov (POMP) models. We create a POMP model by joining two processes, one

that is unobservable (latent) but of interest and one that is observable and dependent upon

the first.

Let the random variables X1:N represent the latent state process where X1 serves to ini-

tialize the process model, fX|Xn−1(xn|xn−1). With the random variables Y1:N representing the

observable measurement process, the measurement model is fYn|Xn(yn|xn), and the collected

data y1:N are observations of this process. We assume that each Yn depends only upon the

latent process at time n, Xn, and is conditionally independent of the other variables rep-

resenting the measurement and latent processes, Ym and Xm, ∀m ∈ 1 : N, m 6= n [20].

Together, X1:N and Y1:N form our POMP model.
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2.3 Likelihood and Iterated Filtering

In problems of statistical inference, it is common to use likelihood to inform parameter es-

timation and model selection. Given a model parameterized by vector θ in the m-dimensional

parameter space Θm, the likelihood function is the joint probability density of the data, y1:N ,

at θ:

L(θ) = fY1:N (y1:N ; θ) (2)

We then aim to find an estimate of θ, θ̂, which maximizes this function, L(θ̂), or its

natural logarithm, `(θ̂) [16].

The utility of an epidemiological model of disease spread is dependent upon its ability to

be used for forecasting cases or incidence. This ability is itself dependent upon our confidence

in the model’s prediction accuracy and our understanding of the ways in which the latent

states change with time. Thus, we have two linked problems: identifying the distribution

of Xn at time n given y1:n and finding parameter values, θ̂, which maximize the likelihood

of our data. These problems are known as the filtering problem and the inference problem,

respectively [5, 16].

Especially in the case of highly complex environments, both the likelihood function and

the transition density of a POMP model can be difficult to write analytically, making these

two problems quite hard. Many methods have been developed to surmount the inference

and filtering problems, one of which is the particle filter. For the particle filter, we need only

supply data, simulators for the initial density and the one time-step transition density of the

latent process, and an evaluator for the density of the observation process conditional on the

latent process to get maximum likelihood estimates for the model parameters.

We first initialize a swarm of M particles at time 1, {Xm
1 ;m ∈ 1 : M}, each containing

the necessary state information along with a vector of parameter values, θ. Then for each

time n ∈ 1 : N , we push the particles forward one time-step by drawing from the one

time-step transition density, giving us an ensemble of particles representing the prediction

distribution at time n, fXn|Xn−1(·|Xm
n−1; θ). We weight the particles according to our data

by evaluating the measurement density, so wn,m = fYn|Xn(yn|xmn ). Finally we resample the

particles according to these weights, which leads to an ensemble of particles representing the

filtering distribution at time n, fXn|Y1:n(xn|y1:n; θ).

Because of the assumed independence of the measurement process variables and their
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dependence upon the latent process variables in a POMP model, we have that:

L(θ) = fY1:N (y1:N ; θ)

=
N∏
n=1

fYn|Y1:n−1(yn|yn−1; θ)

=
N∏
n=1

∫
fYn|Y1:n−1,Xn(yn|y1:n−1, xn; θ)fXn|Y1:n−1(xn|y1:n−1; θ)dxn

=
N∏
n=1

fYn|Xn(yn|xn)

(3)

Notice that the weights used in the particle resampling are wn,m = fYn|Xn(yn|xmn ) for each

particle m at time n. If we take the average of fYn|Xn(yn|xmn ) over all M particles, we can

approximate fYn|Xn(yn|xn; θ). Therefore:

L(θ) =
N∏
n=1

fYn|Xn(yn|xn; θ) ≈
N∏
n=1

1

M

M∑
m=1

fYn|Xn(yn|xmn ) (4)

In other words, by the Monte Carlo principle we can approximate the conditional likeli-

hood at time n with wn,m. Thus the particle filter provides a much easier way to estimate

the likelihood of the data given our model and to approximate the distribution of Xn at time

n given y1:n [14, 12, 10].

An extension of the particle filter is the improved iterated filtering algorithm (IF2) devel-

oped by Ionides et al. [11]. As a plug-and-play method, IF2 is a computationally efficient,

simulation-based means for maximum likelihood estimation and inference. IF2 takes an ini-

tialized swarm of particles and, using a combination of particle filtering, small changes to

the parameter values, and particle resampling, estimates the parameter values which achieve

the maximum likelihood [12]. With the particle filter and IF2, we are able to approximate

solutions to the inference and filtering problems.

3 Methodology

3.1 Model Structure

Lee et al. used an SEIAR compartmental model (S: Susceptible, E: Exposed, I: Infec-

tious, A: Asymptomatic Infectious, R: Recovered) for the Haiti cholera epidemic. In their

formulation, at a given time point t each compartment contains some unobserved number
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of individuals from the total population of Haiti. Between two time points t and t + 1,

individuals can transition into the system by birth, out of the system by death, or between

compartments at rates that are either specified or estimated. We define these transition

rates with the following series of equations:

qSkEk = λ(t) (5)

qEkIk = σ(1− θ0(t)) (6)

qEkAk = σθ0(t) (7)

qIkRk = qAkRk = λ (8)

qRkSk = αqS0Sk = qE0Ek = qI0Ik = qA0Ak = qR0Rk = ηk(t) (9)

q·S0 = µqSk· = qEk· = qIk· = qAk· = qRk· = δ (10)

where qXkYk indicates the one time-step transition rate from compartment X to compartment

Y , and k ∈ [0, 10] denotes vaccination cohort with k = 0 indicating the cohort that did not

receive vaccinations. At time t, ηk(t) is the vaccination rate of cohort k, and λ(t) is the

force of infection, calculated as λ(t) = β(I(t)+(1−κ)A(t))ν
N(t)

. The seasonal transmission term

is β =
∑6

i=1 βisi, which consists of six degree six periodic B-spline terms, s1:6, multiplied

by estimated seasonality parameters, β1:6. I(t) is the proportion of the population that is

infectious at time t, A(t) is the proportion of the population that is asymptomatic at time

t, N(t) is the population of Haiti at time t with N0 = 10911819, κ = 0.95 is the assumed

reduction in infectiousness of asymptomatic individuals, ν is an estimated population mixing

coefficient, and θ0(t) = 0 is the proportion of non-vaccinated, exposed individuals who

become infected but are asymptomatic. Not dependent on time are 1
α

= 8, the mean duration

of natural immunity in years; 1
σ

= 1.4, the latent period of cholera in days; 1
γ

= 2, the

infectious period of cholera in days; µ = 0.43, the birth rate per 1000 individuals per week;

and δ = 0.14, the natural death rate per 1000 individuals per week. q·S0 and qXk· denote the

transition rates into and out of the system’s compartments via birth and death, respectively.

Below is a figure based upon the model diagram from Lee et al. [15]. It illustrates the

compartmental model with one vaccination cohort. Transitioning out of the system due to

death is omitted for legibility.
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Figure 1: SEIAR compartment model diagram with one vaccination cohort adapted from Lee et

al. [15].

3.2 Reproduction

The preference for complex over simple models has been growing for several decades

despite the fact that it has been shown that complexity is associated with decreases in

forecasting accuracy [9]. Because epidemiological modelling is motivated by the need to ac-

curately forecast disease prevalence to inform policy, we first establish a point of comparison

for the evaluation of our model fit and quality. We elect to use a linear, Gaussian autoregres-

sive moving average (ARMA) model of order (2,1) as it is a fairly simple model in which the

current state depends only on previous states and white noise [21]. We can then compare

the likelihood of the data under this model to the likelihoods achieved under our proposed
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models to evaluate whether the additional complexity is truly beneficial.

Lee et al. divided the case data into two periods: epidemic (October 23rd, 2010 through

March 31st, 2015) and endemic (April 1st, 2015 through January 12th, 2019) [15]. We

adopted this breakpoint in our analyses. The ARMA(2,1) benchmark model achieved log-

likelihoods of -1616.678, -1139.238, and -2800.808 for the epidemic, endemic, and the com-

bined time period, respectively.

After establishing benchmark log-likelihoods, we attempted to reproduce the results of

Lee et al. as closely as possible in order to facilitate the evaluation of their model and

parameter estimates. Lee et al. implemented their model in the R package pomp v1.19

and started the model calibration by generating 300 different sets of starting parameter

values. They then used trajectory matching followed by iterated filtering to find a maximum

likelihood estimate for the parameter values using each of the 300 sets. From the epidemic

calibration, they pruned away sets resulting in filtering failures or extreme outlying values.

The remaining sets were used as starting values for the endemic calibration in which all

parameters were reestimated, excluding the initial state values (E0 and I0) [15].

We repeated most of this process with some minor changes. We did not perform trajectory

matching as it assumes a deterministic latent process, which is not assumed in the forecasting

model. Additionally, Lee et al. did not publish their initial starting sets, so we created our

own using the schema provided in their supplemental code. We left weeks with missing data

as NA rather than 0 as the pomp package is capable of working with missing data. We also

filtered out epidemic parameter sets with ν ≤ 0.9 and β1 ≥ 100 and endemic parameter sets

with log-likelihoods of -3000 units or less to avoid outlying parameter values similar to Lee

et al.’s pruning process. Our reproduction (fig. A1) does seem to visually match the results

of Lee et al. in figure S7 of their supplement [15].

4 Model and Method Adjustments

Lee et al. did not report parameter point estimates as part of their findings. Rather, they

used a cloud of parameter values to repeatedly simulate reported cases and then summarized

over these simulations when plotting. This provided a relatively good visual match to the

observed reported cases, but a cloud of parameter sets is not entirely helpful for inference

and prediction as there is no clear method by which to evaluate the model’s performance.

For this reason, we propose slight adjustments to the model and methods in order to more

rigorously predict cholera elimination and vaccination campaign efficacy in Haiti.
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We first suggest alternative algorithmic parameters when estimating model parameter

values with the end goal of identifying maximum likelihood estimates. We used the improved

iterated filtering algorithm as implemented in the pomp function mif2(). We elected to

use 5000 particles and iterated 100 times in order to reduce variability in the log-likelihood

estimates and to avoid potential particle depletion. Moreover, we increased the random walk

standard deviations and created a larger set of starting values for the parameters for our

global search for the MLE. In the following sections, we describe the structural alterations

we made to the model.

4.1 Overdispersion

Creating an equidispersed model can have inappropriate implications on the biological

processes assumed to be driving the model. Especially in the case of epidemiological model

development for the purpose of forecasting, the importance of incorporating enough stochas-

ticity to explain the collected data has previously been discussed [2, 13]. The model proposed

by Lee et al. did take stochasticity into consideration by estimating τ , the inverse dispersion

parameter for the negative binomial distribution simulator used in the measurement process

[14, 15].

Ct = NegBinom(ρξ, τ); Ct = cases at time t, ρ = force of infection, ξ = incidence

(11)

However, their latent process remained equidispersed. Calibrations to the epidemic period

achieved log-likelihoods of no greater than -1823.403 units, and calibrations to the endemic

period only -1143.416. Though their model’s log-likelihood was greater than that of the

ARMA benchmark model in the endemic period, their model was not competitive in the

epidemic period as it achieved a log-likelihood over 200 units below the ARMA model’s. In

an attempt to achieve higher likelihoods in the epidemic period, we included the addition

of another parameter, σ2, the variance of a gamma white noise process that provided a

multiplicative effect upon the force of infection:

ω ∼ Gamma(σ2, dt); λ(t) =
(I(t) + (1− κ)A(t))νβ

N(t)
× ω

dt
(12)

where dt is the time interval, λ(t) is the force of infection at time t, κ is the assumed reduction

in infectiousness of asymptomatic individuals, ν is a population mixing coefficient, I(t) is

the proportion of the population that is infectious at time t, A(t) is the proportion of the
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population that is asymptomatic at time t, and N(t) is the total population of Haiti at time

t.

4.2 Model Fitting

Using the maximum likelihood estimates of the parameters from this adjusted model’s

calibration, we plotted the simulated case reports against the case data (fig. 2). Using

point estimates has the added advantage of facilitating model evaluation and interpretability.

For example, having a single value for the reporting rate, ρ, rather than a range enables

us to calculate a single likelihood value for model comparison and provides more specific

information about the disease’s progression through the population.

Figure 2: Plot of model simulations with overdispersion in the latent process using the parameter

MLEs. Solid line indicates the median simulated reported cases across parameter sets. Ribbon

indicates the 2.5th and 97.5th percentiles for the simulated reported cases. Inset provides a closer

view of the model fit from 2013 through 2018.
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4.3 Profile Likelihood

It is less than ideal to evaluate model fit or perform model selection using solely visual

convergence of simulations. Because of this, we reestimated all parameters with the exception

of σ2 to create a profile log-likelihood plot over σ2 and get a better idea of the MLE for this

parameter.

Figure 3: Profile log-likelihood plot over σ2 for the epidemic and endemic periods. The locations

at which the red line intersects the curve connecting the points (not pictured) indicate the 95%

confidence interval for σ2.

From this figure, we see that σ2 values of around 0.09 to 0.13 in the epidemic period

and 0.09 to 0.16 in the endemic period are most consistent with the case data and have

associated log-likelihoods in the epidemic and endemic periods of upwards of -1610 and -

1130, respectively. This profile log-likelihood plot provides a better understanding of the

amount of uncertainty accompanying our estimate of σ2 [4]. The narrow confidence interval,

lack of identifiability issues, and improvement in log-likelihood support the inclusion of this

parameter in the model.

4.4 Joint Estimation

Lee et al. proceeded by fitting the model to the epidemic period, simulating to the end

of the epidemic period with each set of parameter estimates, and then they used the final
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states to reestimate all of the parameters for the endemic period. Though this method did

achieve relatively good looking simulations with reasonably high log-likelihoods after adding

σ2, there is justification for linking the two estimation procedures more closely. For one, it is

mechanistically logical to use all of the available data to inform the estimation of parameters

that are present in the model during both periods. As the designation of the break-point

between periods is somewhat arbitrary and the epidemiological system exists without respect

for this breakpoint, it also may be better to estimate demographic and seasonal parameters

without respect for this break-point.

We fit the model to the epidemic and endemic periods simultaneously, estimating only ρ,

τ , and σ2 separately. This jointly estimated model performed quite well with a log-likelihood

of about -2734.761, beating the ARMA benchmark by over 50 log-likelihood units.
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Figure 4: Plot of simulations from the jointly estimated model with additional overdispersion in

the latent process using the maximum likelihood estimates of the model parameters. Solid line

indicates the median number of reported cases from simulations. Ribbon indicates the 2.5th and

97.5th percentiles for the simulated reported cases. Inset provides a closer view of the model fit

from 2013 through 2018.

4.5 Model Comparison

Though these models are all closely related, they are not nested and so we cannot select

a model based upon a likelihood ratio test. However, a comparison of likelihoods is still

informative so long as we keep in mind the nature of the models’ relationship. The Akaike

Information Criterion (AIC) is a likelihood-based measure that can be used for model selec-

tion that applies a penalty to a model’s score according to its complexity. Below we supply

an AIC table (table 1) for comparison of the four models discussed above: the ARMA(2, 1)

benchmark model, the original model proposed by Lee et al., the altered model with latent

process noise, and the jointly estimated altered model.
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We estimated the log-likelihoods for the two altered models using repeated particle filters

and the parameter maximum likelihood estimates. For Lee et al.’s original model, we report

the best possible likelihood achieved across all calibration parameter sets. The full log-

likelihoods were calculated as the sum of the likelihoods from the epidemic and endemic

periods for the models without joint estimation. The joint model log-likelihoods for the

epidemic and endemic periods were calculated as the sum of the conditional log-likelihoods

at each time point in the corresponding time periods. We took the average of 20 replications

of the particle filter.

Table 1: Table of log-likelihoods by period, number of estimated parameters, and AIC are reported

for the ARMA(2,1) benchmark model, original Lee et al. model, the altered model, and the jointly

estimated altered model.

Measure ARMA Model Lee et al. Model Alt. Model Joint Model

Epi. Log-Lik. -1616.678 -1823.403 -1600.133 1612.962

End. Log-Lik. -1139.238 -1143.416 -1121.02 -1127.888

Full Log-Lik. -2800.808 -2966.819 -2721.153 -2735.623

Num. of Params. 5 11+9=20 12+10=22 15

AIC 5611.616 5973.638 5486.306 5499.522

According to AIC, the altered model with the lowest score is the ideal model; however,

bearing in mind the limitations of likelihood-based model selection discussed above, we opt

to use the jointly estimated altered model in the following forecasting section. This decision

was made based upon the model’s greater log-likelihood compared to the original model as

well as its lower complexity compared to the altered model without joint fitting.

5 Forecasting

The impetus behind many epidemiological modelling studies is the need to predict future

outbreaks of a disease in order to avert widespread infection and death. For this reason, our

final section concerns model forecasting with respect to the variety of vaccination campaigns

studied by Lee et al. We used the jointly estimated altered model for our forecasting and

did so for the following 6 scenarios:
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• No Vaccinations

• Two Department: vaccination carried out in the Artibonite and Centre departments

over two years

• Three Department: vaccination carried out in the Artibonite, Centre, and Ouest de-

partments over 2 years

• Slow National: vaccination carried out in all 10 departments over 5 years

• Fast National: vaccination carried out in all 10 departments over 2 years

• Fast National, High-Coverage: vaccination carried out in all 10 departments over 2

years

The first four vaccination campaigns assumed target population coverage of 70% with two

doses, 10% with one dose, and 20% with zero doses, while the Fast National, High-Coverage

scenario assumed 95%, 1.67%, and 3.33% for two-dose, one-dose, and zero-dose coverage,

respectively. All vaccination efficacy and roll-out specifications were kept the same as in Lee

et al. [15].

A simulation was said to achieve cholera elimination if its true incidence fell below one

case for at least fifty-two consecutive weeks after the beginning of the vaccination campaign

and remained below one case for the rest of the ten-year forecasting period. A simulation

was said to achieve cholera elimination at x years if the fifty-two consecutive week period

began before the end of year x. Below we provide a table of the predicted probabilities of

elimination of cholera after five years in all six scenarios for our jointly estimated altered

model along with the probabilities found using the original model as reported by Lee et al.

[15]. The probability of elimination was calculated as the proportion of simulations achieving

five-year elimination. One thousand simulations were carried out for the joint model, but

the number of simulations was not reported for the original model as it used a collection of

parameter sets rather than repeated simulations with the parameter MLEs.
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Table 2: Table of estimated probabilities of elimination of cholera by vaccination scenario for the

original Lee et al. model and the jointly estimated, altered model [15].

Model No Vac. 2-Dept. 3-Dept. Slow Nat. Fast Nat. Fast Nat., High Cov.

Original 5.8% 32.7% 64.5% 71.6% 79.6% 88.2%

Altered 99.0% 100% 100% 100% 100% 100%

The jointly estimated altered model predicted the elimination of cholera in all scenarios

with very high probability. Plots of the simulated reported cases and true incidence by vacci-

nation scenario (fig. A2, fig. A3) show that the elimination time was reduced as vaccination

administration grew more rigorous. Interestingly, even in the case of no intervention, the

model predicted fade-out of the disease by the start of 2021. These results contrast with the

forecasting conducted by Lee et al. which predicted seasonal variation in the number of cases

(zero to upwards of two thousand cases) across all scenarios as well as very low probability

of elimination in the No Vaccination scenario with the possibility of reemergence [15].

6 Discussion

Using a combination of Monte Carlo, maximum likelihood, and simulation-based meth-

ods, we evaluated a stochastic state-space model for the 2010-2019 Haiti cholera epidemic

proposed by Lee et al. at the Bloomberg School of Public Health along with two of our own

variations on the model [1]. Though only consisting of minor adjustments in the calibration

methodology and latent process specification, these altered models achieved improvements

in likelihood over the original model.

These varied likelihood estimates coupled with the differences in forecasting results em-

phasize the importance of rigorous model fitting and interrogation. Epidemiological models

can be of great importance when faced with an infectious disease outbreak as they can provide

insights into the potential effectiveness or failure of intervention plans to mitigate spread.

However, the utility of these models hinges upon the assumption that they are appropriate

for the situation; that is, that they are able to come close to describing the data-generating

process(es). Whether due to improper parameter estimation or model misspecification, a

model that is unable to explain the data is not likely to produce accurate predictions and is

ultimately of little use to researchers and public health officials alike.
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6.1 Limitations

After the onset of the epidemic, the Haiti Ministry of Health and Population began

a national plan for combating cholera. The plan included an assortment of interventions

including improvements to sanitation, water accessibility, and strict case monitoring [22].

Because of the time needed to implement large-scale changes to the water infrastructure of

the country, many small vaccination campaigns were carried out from 2012 to 2018 as a

first step to mitigating the spread. The number of individuals receiving at least one dose

totaled over 1.5 million, or approximately 9% of the population of Haiti. Case-area targeted

interventions (CATIs) consisting of cholera education, disinfecting spray, soap, and chlorine

tablets were also supplied to over 48,000 locations across the country [17].

In this case study, the data used to fit all the models included 430 weeks of case data

spanning October 23rd, 2010 through January 12th, 2019. This interval overlaps significantly

with the periods in which the series of vaccination campaigns and CATIs were deployed.

However, none of these models included mechanisms for the campaigns or the intervention

programs. As a consequence of this, we remain critical of the final model parameter estimates

reported in table A1 despite the fact that our adjusted models are competitive with the

simple ARMA model. Maximum likelihood estimation attempts to find the parameter values

for a model that maximize the probability of observing the data. This can come with

unintended consequences related to the mechanisms underlying the processes of interest.

There is the possibility that the MLE we found for any given parameter is not a good estimate

of the true parameter value as the MLE may be biologically or ecologically improbable. In

addition, the model construction can greatly influence the parameter estimates. In the case

of our study, the exclusion of the vaccination campaigns and intervention programs may

have led to other parameters compensating for the omitted model components in order to

explain the data. Although our altered models outperformed that of the original authors

according to likelihood-based measures, we must be mindful of the relationships between

model construction, model fitting, and model quality.

Looking more deeply at figure 2 and figure 3, it is clear that the simulations do not

match the case reports in the period after the start of 2013 as closely as in the years prior

to this point. The discrepancy between the data and the model simulations is more clearly

visible when plotting on the natural logarithmic scale as in fig. A4, fig. A5, fig. A6). To

understand why the change of scale highlights this disparity, suppose we have a dataset of

two measurements: 1 case in week one and 100 cases in week two. We simulate cases and get

6 cases in week one and 105 cases in week two. Plotting this on the natural scale would show

18



the same relative difference of 5 cases between the simulations and measurements. However,

in week one we overestimated the number of cases by a factor of 6, while in week two we

only overestimated by a factor of 1.05. Transforming the cases with the natural logarithm

allows us to better diagnose model problems by illustrating these differences in magnitude.

It is also important to note that there are many other methods of model criticism that

can be carried out to even more thoroughly evaluate model quality and fit [16, 4]. Additional

likelihood profiles and model diagnostics such as plots of the autocorrelation between cases at

different time points as well as analysis of the spatial distribution of cases and the variability

of case forecasts through time can be instrumental in assessing a model’s appropriateness in

context [13]. Due to the nature of maximum likelihood estimation and the iterated filtering

algorithm, there is also the option to carry out a more exhaustive search throughout the

parameter space when fitting the model. The algorithmic parameters of IF2 include starting

values for all estimated parameters, the number of particles used when filtering, and the

number of iterations [12]. In an attempt to balance the price of computation with rigor of

results, we used 450 (jointly estimated adjusted model) and 500 (adjusted model) sets of

starting values, 5000 particles, and 200 iterations when fitting the adjusted models. But

by using a larger number of starting points, particles, and iterations, one might be able to

identify parameter values that achieve a higher likelihood.

Despite the fact that our models failed to produce simulations that visually matched the

case data, we maintain that our study was successful. We aimed to exhibit crucial steps in

epidemiological model construction and application by building upon the framework estab-

lished by Lee et al. [1]. We therefore restricted our adjustments of the original model to

minor alterations in order to underscore this important relationship between model develop-

ment and model quality. Though the poorly matching simulations indicate that additional

improvements can be made, the greater likelihoods and vastly contrasting forecasts still illus-

trate the significance of thorough model fitting procedures and proper model specification.

7 Conclusion

There have been no laboratory confirmed cases of or deaths caused by cholera in Haiti

since early 2019, most likely due to the fast and widespread deployment of CATIs because

of the limited distribution of vaccinations [17]. Similar to the reality of the last few years

and Haiti’s response to the epidemic, our jointly estimated altered model predicted the

natural elimination of cholera by early 2021 without any vaccination interventions. Though
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conducted post hoc, these results have promising implications for the model’s quality and,

more broadly, for the application of mathematical modelling for disease transmission to

informing public health decision-making.

Many of the techniques and methods used in this demonstration of the power of simu-

lation-based inference can be extended to current and future epidemiological contexts such

as the recent magnitude 7.2 earthquake that hit Haiti in August of 2021. Over 1,800 water

supply systems, 53 healthcare sites, and 130,000 homes have been damaged by the earth-

quake and Tropical Depression Grace [23]. Though cholera has not been observed in Haiti

for upwards of three years, the threat of its reemergence is present, especially considering the

fact that the 2010-2019 epidemic arose in the aftermath of a magnitude 7.0 earthquake that

ravaged the country and its infrastructure [18]. Hopefully, proper modelling can be helpful

in informing policy by providing insights into the efficacy of potential response plans in an

effort to avert a second cholera epidemic.

20



8 Appendix

Table A1: Table of parameter values achieving the maximum likelihood for the epidemic (epi) and

endemic (end) calibrations separately with the exception of the jointly estimated altered model in

which the two periods were combined. Parameters reported include reporting rate (ρ), measurement

process overdispersion (τ), latent process overdispersion (σ2), population mixing coefficient (ν), and

seasonality terms (β1:6). All parameters are reported to 4 decimal places.

Model ρ τ σ2 ν β1:6

Original (epi) 0.8220 15.2111 NA 0.9811

3.0048, 3.8524,

2.4215, 3.7633,

3.2372, 3.4116

Original (end) 0.9968 22.2507 NA 0.9925

3.1299, 3.3738,

2.1317, 3.3409,

2.8502, 2.7652

Altered (epi) 0.3148 376.7802 0.1016 0.9841

5.3324, 2.6566,

3.8325, 2.7666,

5.0974, 1.8034

Altered (end) 0.9517 85.4460 0.01122 0.9869

2.4296, 4.1216,

2.0811, 3.7738,

2.4402, 3.6037

Joint, Altered
0.4765 (epi)

0.4497 (end)

688.7796 (epi)

105.3583(end)

0.1106 (epi)

0.1677 (end)
0.9976

4.0148, 2.7089,

2.7423, 3.0589,

3.5747, 2.2309
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Figure A1: A reproduction of figure S7 of Lee et al. [15]. The solid line indicates the median

number of reported cases from the simulations across sets of parameters, and the ribbon indicates

the 2.5th and 97.5th percentiles for the simulated reported cases. Inset provides a closer view of

the model fit from 2013 through 2018.
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Figure A2: Forecast reported cases by vaccination campaign. Solid line indicates the median

number of reported cases from the simulations across sets of parameters. Ribbon indicates the 2.5th

and 97.5th percentiles for the simulated reported cases. Note that the plot shows forecasts until

2023 while the forecasting was conducted for a ten-year period extending until 2030. Reemergence

did not occur in any campaign.
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Figure A3: Forecast true incidence by vaccination campaign. Solid line indicates the median

number of reported cases from the simulations across sets of parameters. Ribbon indicates the

2.5th and 97.5th percentiles for the simulated incidence. Note that the plot shows forecasts until

2023 while the forecasting was conducted for a ten-year period extending until 2030. Reemergence

did not occur in any campaign.
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Figure A4: Plot of original model simulations on the log scale. Solid line indicates the median

simulated reported cases across parameter sets. Ribbon indicates the 2.5th and 97.5th percentiles

for the simulated reported cases.
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Figure A5: Plot of model simulations on the log scale with overdispersion in the latent process us-

ing the parameter MLEs. Solid line indicates the median simulated reported cases across parameter

sets. Ribbon indicates the 2.5th and 97.5th percentiles for the simulated reported cases.
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Figure A6: Plot of simulations from the jointly estimated model on the log scale with additional

overdispersion in the latent process using the maximum likelihood estimates of the model parame-

ters. Solid line indicates the median number of reported cases from simulations. Ribbon indicates

the 2.5th and 97.5th percentiles for the simulated reported cases.
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Inference for dynamic and latent variable models via iterated, perturbed Bayes maps.

Proceedings of the National Academy of Sciences, 112(3):719 LP – 724, jan 2015.

[13] Aaron A. King, Matthieu Domenech De Cellés, Felicia M.G. Magpantay, and Pejman

Rohani. Avoidable errors in the modelling of outbreaks of emerging pathogens, with

special reference to Ebola. Proceedings of the Royal Society B: Biological Sciences,

282(1806):0–6, 2015.

[14] Aaron A. King, Dao Nguyen, and Edward L. Ionides. Statistical inference for partially

observed markov processes via the R package pomp. Journal of Statistical Software,

69:1–43, 2016.

[15] Elizabeth C. Lee, Dennis L. Chao, Joseph C. Lemaitre, Laura Matrajt, Damiano

Pasetto, Javier Perez-Saez, Flavio Finger, Andrea Rinaldo, Jonathan D. Sugimoto,

M. Elizabeth Halloran, Ira M. Longini, Ralph Ternier, Kenia Vissieres, Andrew S.

Azman, Justin Lessler, and Louise C. Ivers. Supplementary appendix 3: Achieving

coordinated national immunity and cholera elimination in Haiti through vaccination: a

modelling study. The Lancet Global Health, 8(8):e1081–e1089, 2020.

[16] Russell B. Millar. Maximum Likelihood Estimation and Inference: with exmaples in R,

SAS, and ADMB. John Wiley & Sons, Ltd., 2011.
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