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Outline

P What is automatic differentiation (AD)?

P Why is AD important for statistical inference? Existing
evidence.

P What has delayed the impact of AD for inference on nonlinear
stochastic dynamic systems?

P AD for simulation-based inference on mechanistic models: AD
for particle filters using GPUs

P Toward AD for phylodynamic inference
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Introduction to automatic differentiation (AD)

P AD is numerical differentation where compiled code
automatically computes a massive chain rule, taking
advantage of exact expressions for the numerical derivative of
basic operations (+, -, x, log, exp, sin, cos, etc).

P AD does not involve symbolic algebra.
P Modern compilers make AD available for arbitrary programs.

P JAX, a Python extension, does AD with automatic
parallelization for CPU or GPU.
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Modern statistical methods powered by AD

P Deep learning (also uses GPU)
P Stan: Hamiltonian Markov chain Monte Carlo
P Prophet: automatic forecasting

P AD model builder (TMB): random effect models in ecology
and fisheries

Conclusion: AD has allowed growth in model compexity and
data size.
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Mechanistic POMP models and the particle filter (PF,
a.k.a. sequential Monte Carlo, SMC)

P> Partially observed Markov process (POMP) models provide a
framework for mechanistic modeling of dynamic systems with
noisy measurements.

P PF uses a POMP model to generate an ensemble of forecasts
for each successive observation.

P When the observation is recorded, it is “assimilated” into the
forecast by resampling the ensemble members with weight
proportional to the probability of the observation given the
forecast for that ensemble member.

P Remarkably, these iterated forecast and correction steps
provide an unbiased estimate of the likelihood for the model.

P PF just needs a simulator from the dynamic model, not
transition probabilities. It is plug-and-play.
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Why is AD not standard for the particle filter (PF)
likelihood?

P Likelihood evaluation and maximization permits parameter
estimation, confidence intervals, diagnostic testing, model
selection.

P Derivatives help with maximization. They also help with
Bayesian inference, via Hamiltonian Monte Carlo (HMC).

v

So, why doesn't everyone use AD for PF?

v

Technical difficulties

1. Resampling is discontinuous: discrete and so piecewise
constant.

2. The derivative estimate can be numerically unstable even when
the log-likelihood estimate is stable.
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Hypothesis: PF + AD + GPU is a scientific opportunity

P Particle filter methods have proved effective where they are
applicable because

P> They approximate the actual likelihood: statistical efficiency.

P Simulation-based “plug-and-play” structure is convenient for
scientific exploration.

P Deep learning methods use AD + GPU.

P> Artificial neurons with arbitrary weight propagation rules
should be less pertinent than particles that directly simulate
the dynamic process and are properly weighted to estimate the
likelihood.
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Previous attempts at AD for PF

P> Approximating the particle filter using deep learning.
P Ignoring the resampling when calculating the derivative.

P> Obtaining a smooth particle filter at the cost of inferior
scaling and loss of the plug-and-play property.

P AD for smooth functions estimated by Monte Carlo
expectation of non-smooth functions has been widely studied.

Applied to PF, previous methods have struggled with stability
for a long time series.

We looked for a plug-and-play particle filter equipped with
automatic differention that maintains the guarantee of

unbiased likelihood evaluation and provides numerically stable
derivate estimates.
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Differentiated Measurement Off Parameter (DMOP) filter

P Numerically stable automatic derivatives, with controlled bias
and variance, from a plug-and-play particle filter with
unbiased likelihood evaluation (Tan et al., 2024).

Measurement Off-Parameter (MOP-«)

P A MOP particle filter at parameter 6 is a smooth continuation
of the filter at ¢, fixing resampling decisions for ¢ and
accounting for this via “off-parameter’’ measurement weights.

P Off-parameter resampling is analogous to off-policy
reinforcement learning.

P Log-measurement weights are discounted by a factor
a = 1 — € to add stability. At 8 = ¢, log-measurement
weights are all 0, so discounting has no effect.

DMOP-« is differentiated MOP-«
P The derivative of MOP-« at § = ¢ can be computed using
AD applied to an algorithm similar to a basic particle filter.
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Measurement off-parameter filter, MOP-«
First pass: Set § = ¢ and compute gi”j.
Second pass: Set 6 # ¢ and use the same randon number seed
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Differentiated filter, DMOP-«

First pass: Evaluate and build computation graph

Second pass: Differentiate via the chain rule
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Comparing MOP-a and DMOP-«

P The two algorithms are similar
» DMOP-« only has 6, not ¢.

P The role of ¢ in MOP-« is taken by the stop_gradient
operator in DMOP-«

P stop_gradient(x) evaluates to x on the forward pass but is
not differentiated on the backward pass.
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Outline of theory for MOP-a and DMOP-«

1. MOP-1 converges almost surely to the likelihood for all 6, as
does MOP-« for 6 = ¢, as the number of particles, J,
increases.

2. The derivative of MOP-1 provides a strongly consistent
estimate of the log-likelihood derivative.

3. DMOP-« evaluates the derivative of MOP-av at 6 = ¢.

4. DMOP-« has a bias bounded linearly by the length, N, of the
time series with a coefficient that decreases to zero as o — 1.

5. The variance of DMOP-a is O(N4/J) at a« = 1 but O(N/J)
for o < 1.

Regularity conditions: 1 and 2 require bounded derivatives. 4 and
5 require a mixing property for the latent Markov process.
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Software for DMOP: pypomp

First, an introduction to the R-pomp family of packages
P The pomp R package has provided a solid, principled,
extendable framework for combining time series data with

nonlinear stochastic partially observed mechanistic dynamic
models.

P> Extensions: panel time series data (panelPomp),

spatiotemporal data (spatPomp), phylodynamic data
(phyloPomp).

P Limitations: R is not convenient for AD or GPU computing.
To incorporate these, it may be better to start afresh.

pypomp is a Python extension of pomp enabling AD and GPU.

P Current status: pypomp is in alpha development at
https://github.com/pypomp. The brave are welcome to join.
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Why JAX?

P Actively developed by Google: “Google researchers have built
and trained models like Gemini and Gemma on JAX, and it's
also used by researchers for a wide range of advanced
applications.”

(https://io.google/2025 /explore/technical-session-1)

P JAX code is Python, replacing numpy and scipy with
jax.numpy and jax.scipy

P JAX composable transformations:

P vmap: vectorization
P grad: autodiff
P jit: just-in-time compilation

P JAX uses XLA: accelerated linear algebra
P distributes work across CPU/GPU/TPU cores
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A previously difficult POMP likelihood maximization is
easy with AD and quick/cheap with GPU

P We benchmark on an SIR®S model fitted to 50yr of monthly
cholera mortality in historical Dacca, Bangladesh.

P> Flexible modeling of seasonality and long-term trends lead to
a highly parameterized model.

P> Tractable, but difficult, using an early iterated filtering (IF1)
algorithm in King et al. (2008). Possible with a large
computing cluster and considerable dedication.

P Considerably easier, yet still hard, using the IF2 algorithm of
lonides et al. (2015).

P> Here, we make a preliminary search with IF2, followed by
stochastic gradient ascent with DMOP-q.
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Model diagram (top) and data (bottom)
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Results 1. Speed

P PF on 1 cpu core with 10* particles using R-pomp with the
model compiled into C

P 9.75 sec

P PF on a 10* core GPU with 10* particles using pypomp
P 0.17 sec

P Here, a 10 core GPU is worth 57 CPU cores.

P> This is deliberately indirect: we are also comparing compiled
C with jit-compiled Python.

P> Additional vectorization helps for replicated GPU evaluations

» For 360 replications of iterated filtering, a GPU is worth 450
CPU cores.
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Results 2. The value of AD
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Figure 1: Performance of IFAD and IF2. A: the best out of every 10 runs.

B: All searches. The dotted red line shows the true maximized
log-likelihood.
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pypomp.panel, pypomp.spat, pypomp.phylo

>

>

>

There is no fundamental obstacle to including the R-pomp
extensions in pypomp.

DMOP in pypomp can improve maximization, and facilitate
parallelization, but it does not deal with the “curse of
dimensionality.”

The basic particle filter can scale poorly with the dimension of
the latent process. Intuition: importance sampling in a
high-dimensional space is hard.

In the basic phyloPomp particle filter, scaling can be poor with
the number of demes: It is hard for the particles to maintain
representative diversity for deme membership in a large tree.

This is similar to the spatPomp problem of maintaining
representative diversity at many spatial locations.
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SpatPOMPs and the curse of dimensionality for PF

Two approaches to scalability with (almost) full information.

1. Guided particles. Knowledge of the future can be built into
proposal distributions to ensure that some particles are
consistent with the data.

2. Block particles. Approximating conditional weak dependence
by conditional independence.

P Algorithmically, forecasts are made from the coupled
spatiotemporal model, but data assimilation is carried out
separately for each block.

P Conditional on the coupled dynamics and the measurements,
latent states for separate spatial blocks are approximated as
conditionally independent.

P> This still permits dependence via the coupled dynamics.

Non-likelihood approaches could be implemented in phyloPomp:
variational Bayes, ensemble Kalman filter, neural posterior
estimation,
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Summary

P Remarkably, likelihood-based inference is possible from noisy
measurements of complex, high-dimensional, nonlinear
dynamic systems.

P AD and massively parallel computing will push capabilities to
a new level.

22/24



Thank you!
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