
Inferring biological dynamics 101

2. Sequential Monte Carlo (SMC)

• SMC arose in the 1990s, simultaneously called
particle filtering, bootstrap filtering, Monte Carlo
filtering, and the condensation algorithm.

• Used in physics and chemistry since the 1950s:
“Poor man’s Monte Carlo” [2, 9].

• In 2001, the research area was unified [1, 7].

• SMC provides an alternative to MCMC for
many computations. For dynamic systems, SMC
is preferred.

• SMC resembles natural selection. A “swarm” of
“particles” evolves according to a stochastic
dynamic system. Particles consistent with data
at time t are propagated to t + 1.

• SMC guarantees unbiased likelihood estimates
(more particles gives reduced variance).
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POMP model notation

• The state process model, X(t), is a Markov
process observed at times t1 < t2 < · · · < tN .

• Xn = X(tn) is a discrete-time Markov process,
specified by transition density f(xn |xn−1, θ) and
initial distribution f(x0, θ) at some time t0 < t1.

• The observation model is Yn ∼ f(yn |xn, θ).

We write y1:k = (y1, . . . , yk) and let f(· | ·) denote
an arbitrary density, specified by its arguments.
Important examples are:

• Prediction density. f(xn | y1:n−1, θ)

• Filtering density. f(xn | y1:n, θ)

• Smoothing density. f(xn | y1:N , θ)

• Likelihood evaluation. f(yn | y1:n−1, θ)

Numerical solutions (approximations) for
prediction, filtering, smoothing and
likelihood evaluation enable (aproximately)
full-information POMP inference.
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POMP recursions

Prediction:

f(xn|y1:n−1)=
∫

f(xn|xn−1) f(xn−1|y1:n−1) dxn−1.

Filtering:

f(xn|y1:n) =
f(xn|y1:n−1)f(yn|xn)

f(yn|y1:n−1)
.

Smoothing:
f(xn|y1:N ) ∝ f(yn:N |xn) f(xn|y1:n−1).

Likelihood:

f(yn|y1:n−1) =
∫

f(yn|xn)f(xn|y1:n−1) dxn.

• For Gaussian models, the integrals have a
closed form solution (the Kalman filter).

• If the states are discrete, the integrals are sums.

• In general, numerical integration or
Monte Carlo is required.

• All densities can depend on θ, which is
suppressed here. These recursions integrate out
unobserved state variables, for a fixed model.
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If you want to do the algebra...

• The POMP recursion identities follow in a
couple of lines of algebra, if you set off in the
right direction.

• The POMP conditional independence
assumptions are

f(xn |x1:n−1, y1:n−1) = f(xn |xn−1),

f(yn |x1:n, y1:n−1) = f(yn |xn).

• As tools, you need conditional forms of
standard identities:

f(u |w) =
∫

f(u, v |w) dv,

f(u, v |w) = f(v |w) f(u | v, w).

• Here, f(u |w) is shorthand for fU |M (u |w). The
generic use of f is abuse of notation: the choice
of dummy variables u and w should not
determine the definition of a function.
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Monte Carlo POMP recursions

“Basic SMC” or “Vanilla particle filter”

• The filtering distribution f(xn|y1:n) is
represented by a swarm of particles,
{XF

n,j , j = 1, . . . , J}.
• Each particle is updated according to the
stochastic dynamic model,

XP
n+1,j ∼ f(xn+1 |xn = XF

n,j , θ).

The updated swarm {XP
n+1,j , j = 1, . . . , J}

describes the prediction density, f(xn+1|y1:n).
Phenotypic variation of the swarm is
increased by stochasticity in the update.

• The prediction particles are resampled with
weight wj = f(yn+1 |xn+1 = XP

n+1,j) to describe
the filtering distribution f(xn+1|y1:n+1). This
natural selection reduces phenotypic variation
in the swarm.

• The (n + 1)th conditional log likelihood is
estimated by f(yn+1 | y1:n) ≈ (1/J)

∑J
j=1 wj .
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Mixing is needed for numerical stability

• A stochastic process Z(·) is mixing if Z(s + t)
has negligible information about Z(s) for
sufficiently large t. We do not need a more
precise definition here.

• Mixing (information in the present about the
past) is related to predictability (information in
the past about the present).

• Filtering algorithms for mixing processes can
expect to be numerically stable: small errors
made at one time will have have diminishing
rather than growing consequences.

An important non-mixing process:
Combine the state and parameter vectors of a
POMP to give Z(t) =

(
X(t), θ

)
. The filtering

distribution for Z(tN ) gives the posterior
distribution of θ given y1:N . Ideally, the filtering
and prediction recursions could be used to
compute this posterior. In practice, lack of mixing
means that numerical instability is prohibitive.
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Particle depletion & effective sample size

• J dependent particles carry less information
about a target distribution than J independent
particles. Effective sample size (ESS) is the
equivalent number of independent particles.

• The particle filtering update step increases the
ESS, if the process is mixing: adding random
variation increases population diversity.

• Natural selection decreases ESS. Only a subset
of the particles at time n have offspring at n + 1.
Pairs of particles with a common ancestor more
recent than the mixing timescale of the process
are dependent.

• Low ESS (from heavy selection or slow mixing)
makes the swarm unrepresentative of its target.

• The actual ESS is usually unknown, but
approximations can provide useful diagnostics of
successful filtering. A one-step approximation is

ESS ≈
{ ∑J

j=1 wj

}2{ ∑J
j=1 w2

j

}−1

.
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Parameter estimation using SMC

• Likelihood maximization. SMC provides a
noisy (Monte Carlo) likelihood estimate.

♦ Seed fixing (the method of common random
numbers [10]) fails since resampling gives
discontinuous functions of the random numbers.

♦ For low dimensional parameter spaces, the
likelihood can be approximated directly by
smoothed Monte Carlo estimates [3].

♦ Otherwise, a stochastic maximization
algorithm [10, 8, 4] is needed.

• Bayesian computation. Recall that naively
adding parameters to the state space gives an
unstable Bayesian computation. To generate
mixing and reduce depletion, dynamic noise can
be added to the parameters in various ways
[6, 5]. This strategy is also used for deterministic
filters [11].
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Fixed vs time-varying parameters

• Dynamic noise added to parameters is a way to
model time-varying parameters. Arguably, most
systems vary over time. If it is computationally
convenient to include this, then why not?

• Sometimes time-varying parameters are what
you want, but...

♦ It is hard to interpret results when each
parameter varies over time.

♦ Often, we want to understand how parameters
vary as a function of covariates. Thus, the
parameter varies over time but depends on
covariates in a fixed way.

♦ Including dynamic noise in parameters doubles
the degrees of freedom in the model (each noise
intensity must be estimated).
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Initial value parameters (IVPs)

• The initial value parameter vector φ is a
sub-vector of θ which determines the values of
X(t0).

• The identity parameterization φ = X(t0) is
often used.

• Initial values are distinct from starting values
required to initialize an estimation algorithm.

• Are IVPs needed?

♦ If the dynamics are stationary, X(t0) can be
modeled as a random draw from the stationary
distribution. This avoids the need for IVPs.

♦ A system with dynamic covariates (i.e.,
external forcing) is non-stationary.

♦ Biological systems are often non-stationary.

• Information on IVPS from data is concentrated
in time. This hinders numerical stabilization by
time-varying parameters. Non-IVP parameters,
such as break points, can share this issue.
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Heuristics of hard maximization

• Attaining and certifying global maximization is
infeasible for large multimodal surfaces.

• Theorems guaranteeing global convergence are
useful (they suggest decent local behavior) but
should not be taken literally (unless you have
infinite computational resources).

• There is no substitute for trying many starting
values.

• Many algorithms move from wide search (high
temperature) to local search (cold temperature).
Tempering (non-monotone cooling) can work
better than theoretically justified annealing
(monotone cooling).

• These considerations also broadly apply to
Monte Carlo estimates of posterior distributions.
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Overview of iterated filtering

• Uses the trick of adding noise to stabilize
computations.

• Reduces the added noise in a sequence of
filtering iterations, approaching the fixed
parameter limit.

• Produces a non-Bayesian estimate (the MLE).

• Each iteration looks like a Bayesian
computation with time-varying parameters,
though with a “prior” which contracts toward
the fixed parameter MLE.

• A suitable average of the time-varying
parameters is used to update the current
approximation to the MLE.

• Algorithmically, the SMC recursion over time
is nested within filtering iterations having
diminishing parameter noise. “Recursion” and
“iteration” are synonymous here, but
conventionally refer to their respective loops.
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Evolution analogy for iterated filtering

• For SMC with time-varying parameters, every
particle has a parameter value (the genotype)
and a state value (the phenotype).

• Each resampling event (each observation time
for vanilla SMC) leads to a new generation.

♦ Particles consistent with the new observation
are preferentially propagated. This natural
selection operates on the phenotype.

♦ Genotype diversity is generated by random
perturbation of the parameter vector (genetic
mutation).

♦ The phenotype for the next generation
depends on both the genotype and the current
phenotype (epigenetics).

• Iterated filtering uses the output of one SMC
operation to create a new founder population for
the subsequent SMC operation.
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