
Inferring biological dynamics 101

3. Iterated filtering (IF)

• IF originated in 2006 [6].

• For plug-and-play likelihood-based inference on
POMP models, there are not many alternatives.
Directly estimating the likelihood surface, or
applying generic optimization methods such as
simulated annealing, are not applicable to larger
models.

• Plug-and-play Bayesian alternatives are
computationally problematic. PMCMC is
extraordinarily computationally intensive. The
Liu-West algorithm does not reliably cope with
particle depletion.

• Some case studies are referenced at
wikipedia.org/wiki/Iterated filtering

• We’re going to discuss pseudo-code [3, 7] for the
implementation of iterated filtering in the R
package pomp.
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Supplementary Methods

Algorithm: maximum likelihood via iterated filtering

Model input:

process model f(·), measurement model g(·|·), data y1, . . . , yN , times t0, . . . , tN

Algorithmic parameters:

number of particles J , fixed lag L, number of iterations M ;

cooling factor 0 < a < 1, b > 0; initial state vector X
(1)
I , initial parameter vector θ(1);

variance-covariance matrices ΣI , Σθ.

Procedure:

1. for m = 1 to M

2. draw XI(t0, j) ∼ normal(X
(m)
I , am−1ΣI), j = 1, . . . , J

3. set XF (t0, j) = XI(t0, j)

4. draw θ(t0, j) ∼ normal(θ(m), bam−1Σθ)

5. set θ̄(t0) = θ(m)

6. for n = 1 to N

7. set XP (tn, j) = f(XF (tn−1, j), tn−1, tn, θ(tn−1, j), W )

8. set w(n, j) = g(yn|XP (tn, j), tn, θ(tn−1, j))

9. draw k1, . . . , kJ such that Prob[kj = i] = w(n, i)/
∑

l w(n, l)

10. set XF (tn, j) = XP (tn, kj)

11. set XI(tn, j) = XI(tn−1, kj)

12. draw θ(tn, j) ∼ normal(θ(tn−1, kj), a
m−1(tn − tn−1)Σθ)

13. set θ̄i(tn) to be the sample mean of {θi(tn−1, kj), j = 1, . . . , J}

14. set Vi(tn) to be the sample variance of {θi(tn, j), j = 1, . . . , J}

15. end for

16. θ
(m+1)
i = θ

(m)
i + Vi(t1)

∑N
n=1 V −1

i (tn)(θ̄i(tn)− θ̄i(tn−1))

17. set X
(m+1)
I to be the sample mean of {XI(tL, j), j = 1, . . . , J}

18. end for

Return:

maximum likelihood estimate for parameters, θ̂ = θ(M+1);

maximum likelihood estimate for initial values, X̂(t0) = X
(M+1)
I ;

maximized log likelihood estimate, logL(θ̂) =
∑

n log(
∑

j w(n, j)/J)

Note:

Here, normal(µ,Σ) denotes a multivariate normal random variable with mean vector µ and
covariance matrix Σ. X(tn) takes values in R

dx , yn takes values in R
dy , θ takes values in

R
dθ and has components {θi, i = 1, . . . , dθ}. The computationally challenging steps (6–15)

correspond to a standard implementation of particle filtering8; many refinements are possible
within the context of this algorithm. The update equation (16) is the main innovation of
Ionides et al.
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• The name(s): “Iterated filtering” and
“maximum likelihood via iterated filtering” and
“mif” are synonyms.

• Process model. f(·) generates numerical
solutions to the Markov transition model, so

X(tn) = f(X(tn−1), tn−1, tn, θ,W ).

♦ Here, W is random quantity, drawn
independently each time f(·) is evaluated.

♦ Any algorithm which inputs the model in this
black box form has the plug-and-play property.

• Measurement model. g(· | ·) is
fYn|Xn

(yn |xn, tn, θ). We require that this
conditional density can be evaluated.

• Initial time t0. This is the time at which
initial state variables are defined. In principle,
initial state variables could be defined at t1.
Setting t0 < t1 gives the dynamic process some
time to disperse though the state space before
the first observation.
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• Number of particles, J . Often, J = 1000 is
about right. If the effective sample size drops
below about 100, that can be problematic.

• Fixed lag, L. This is used for estimating
initial value parameters (IVPs). It should
correspond to the mixing time of the system.
After time tL, it is assumed there is negligible
additional information about X(t0).

• Number of filtering iterations, M . Usually,
M = 50 or M = 100 is enough. By contrast, for
PMCMC one might use M = 50000 [1]. The
difference arises since IF investigates the
likelihood surface within each filter iteration,
whereas PMCMC (and other black box methods
such as simulated annealing) use each filter
iteration only for its likelihood at a fixed
parameter value.
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• cooling factor, 0 < α < 1. This gives fraction
by which temperature (i.e., the random walk
intensity of the parameters) is reduced at each
iteration. α = 0.95 and α = 0.98 are standard.
Theoretically, this geometric cooling is too quick
to guarantee asymptotic convergence [5]. In
practice, multiple re-starts with geometric is
often preferred [4].

• initial variance multiplier, b > 0. At the
start of each iteration, the parameter space must
be re-populated using the current parameter
point estimate. The initial diversity is equivalent
to b steps of the random walk. In pomp, the
mif() argument var.factor happens to
multiply the standard deviation rather than the
variance (i.e., it matches

√
b).

♦ Values var.factor = 2 and var.factor = 4
are usual.

♦ A larger value of b leads to more ambitious
jumps in the parameter update of step 16.
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• initial state vector, X
(1)
I . Here, we should

say “starting initial state vector.” For better or
worse, we are not describing the initial state
vector as part of the parameter space. We are
also assuming an identity map from the IVPs to
the initial states.

• initial parameter vector, θ(1). Here, we
should say “starting parameter vector.”

• variance-covariance matrix, Σθ. The
random walk variance for each time step when
m = 1. In mif(), Σθ is assumed diagonal, with
entries specified by the rw.sd argument.

♦ It is helpful to transform all parameters so
their uncertainty is on a unit scale (e.g., log and
logistic transformations where appropriate).
Then, using a common value such as
rw.sd = 0.02 works surprisingly often.

• variance-covariance matrix, ΣI . Similar to
Σθ, but the noise only gets added once per
iteration.
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• step 1 (outer loop). For each value of m, an
entire filtering operation and parameter update
is carried out.

• steps 2 and 4 (parameter initialization).
The choice of the normal distribution is
convenient but plays no theoretical role. Any
distribution with the given mean and variance
would suffice.

• step 3 (state initialization). The filter
distribution at time t0 is defined to be the
unconditional distribution of X(t0).

• step 5. The filter mean of θ(t0) is defined to be
the unconditional mean.

• step 6 (inner loop). This is the vanilla SMC
recursion, with the state process augmented by a
parameter vector undergoing a random walk.

• step 7 (particle updating). Constructing the
prediction distribution at time tn. It is implicit
here that this is carried out for each particle
j = 1, . . . , J .
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• step 8 (filtering weight computation).

• steps 9, 10, 11 (resample states).
Conceptually, one can think of multinomial
resampling with weights w(n, j). There are
alternatives which have the same marginal
probabilities, and hence the correct theoretical
properties, but reduced Monte Carlo variance.
mif() uses a systematic resampling method [2].

• step 12 (resample and move parameters).

• steps 13, 14. Compute the filtering mean and
prediction variance for use in step 16. Here, θi is
the ith component of θ, and the operation is
implicitly carried out for each value of i.

• step 16 (parameter update). The quantity
N∑

n=1

V −1
i (tn)(θ̄i(tn)− θ̄i(tn−1))

is an approximation to the derivative of the log
likelihood in a neighborhood of θ(m). The
premultiplier Vi(t1) is chosen to have an
appropriate scale, but is somewhat arbitrary.
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• MLE, θ̂ = θ(M+1). This is an approximation to
the MLE: more correctly, θ̂ ≈ θ(M+1).
Simulation studies, multiple starting values, and
Monte Carlo replications are needed to validate
the estimator on non-trivial problems.

• MLE, X̂(t0) = X
(M+1)
I . Estimating initial

values is not a strength of IF. Additional
attention to initial values, such as addition
iterations filtering only to time tL, may be
warranted.
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• Estimate `(θ̂) ≈ ∑N
n=1 log(

∑
j w(n, j)/J).

This estimate of the maximized log likelihood is
a free byproduct of IF. Weaknesses are:
(i) since the added noise is not quite zero, even
on the last iteration, this is the likelihood of a
perturbed model not the desired model;
(ii) fewer particles are needed to run IF
successfully compared to accurate likelihood
evaluation (this is because IF borrows strength
between iterations).

♦ Additional SMC runs (pfilter) should be
carried out at interesting sets of parameters.

♦ Monte Carlo error on likelihood evaluation can
be relatively easily measured and reduced. It
helps scientific progress to separate likelihood
evaluation error from maximization error.

♦ Monte Carlo error in likelihood estimation of
¿ 1 log unit is negligible. Replication is needed
to assess error, but increasing J is often more
efficient than averaging over replications.
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