pomp: an R package for time series analysis using POMP (Partially Observed Markov Process) models

Developers: Aaron King, Edward Ionides, Dao Nguyen Contributors: C. Bretó, S. P. Ellner, M. J. Ferrari, B. E. Kendall, M. Lavine, D. C. Reuman, H. Wearing, S. N. Wood

- A platform supporting model development, statistical methodology development, and data analysis, for nonlinear non-Gaussian models.
- New methods have enabled previously infeasible analysis:
 - iterated filtering (mif)
 - particle Markov chain Monte Carlo (pmcmc)
 - approximate Bayesian computation (abc)
- A cost of generality: pomp has focused on flexible computational tools, such as sequential Monte Carlo (SMC), which are exponentially costly in the state dimension.

- A pomp model is defined by user-specified functions.
- **Plug-and-play** inference algorithms can be written in terms of the model functions
 - rprocess: simulates the latent Markov process.
 - rmeasure: simulates the measurement model.
 - dmeasure: evaluates the measurement model density.
- Some methods, such as expectation-maximization (EM) and standard MCMC algorithms, also require dprocess. This is problematic for models more easily characterized via simulation algorithms.

(a) Plug-and-play

	Frequentist	Bayesian
Full information	iterated filtering (mif)	PMCMC (pmcmc)
Feature-based	nonlinear forecasting (nlf)	ABC (abc)
	probe matching & synthetic	
	likelihood (probe.match)	

(b) Not plug-and-play

	Frequentist	Bayesian
Full information	EM and Monte Carlo EM	MCMC
	Kalman filter	
Feature-based	Trajectory matching	
	(traj.match)	
	extended Kalman filter	
	Yule-Walker equations	

- Disease ecology: cholera, dengue, influenza, malaria, measles, pneumonia, polio, rabies.
- Population ecology: Nicholson's blowflies.
- finance: stochastic volatility models.