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Outline

The curse of dimensionality. Particle filter (PF) methods are effective
for inference on low-dimensional nonlinear partially observed stochastic
dynamic systems. They scale exponentially badly.

Bagged filters. Combining independent Monte Carlo filters.

• Unadapted bagged filter (UBF)

• Adapted bagged filter (ABF)

• Adapted bagged filter with intermediate resampling (ABF-IR)

Blocked particle filter (BPF). Theory by Rebeschini and van Handel
(2015). Independently proposed by Ng et al. (2002).

From filtering to inference. Iterated filtering using stochastically
perturbed parameters.

Metapopulation dynamics. Bagged and blocked filters work on
collections of weakly coupled populations, in theory and practice.
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What is a SpatPOMP?

POMP models are partially observed Markov processes, also known as
state space models or hidden Markov models.

SpatPOMP models are POMP models with a unit structure.

Latent Markov process: Xu,n = Xu(tn), u ∈ 1 :U , n ∈ 1 :N

Observation process: Yu,n depends only on Xu,n

The units could be a metapopulation, say cities in an epidemic model.
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U = 40 units for a coupled measles SEIR model
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A. Simulated Susceptible-Exposed-Infected-Recovered dynamics coupled
with a gravity model (log of biweekly reported cases).
B. Measles UK pre-vaccination case reports for the 40 largest cities.
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Particle filter (PF)

Evolutionary analogy

Mutation
↓

Fitness
↓

Natural selection

Particle filter algorithm

Predict: stochastic dynamics
↓

Measurement: weight
↓

Filter: resample

• PF is an evolutionary algorithm with good mathematical properties: an
unbiased likelihood estimate and consistent latent state distribution.
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Block particle filter (BPF)

Evolutionary analogy

Mutation
↓

Fitness
for each chromosome

↓
Natural selection

for each chromosome
↓

Recombine chromosomes

Block particle filter

Predict: stochastic dynamics
↓

Measurement: weight
for each block

↓
Filter: resample
for each block

↓
Recombine blocks

• Blocks in BPF allow recombination (reassortment of chromosomes in
sexual reproduction) in the evolutionary analogy.

• Blocks are a partition of the spatial units.
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Anticipated limitations of BPF

Rebeschini and van Handel (2015) proved an asymptotic limit where BPF
beats the curse of dimensionality but were modest in their applied hopes
since blocks small enough to be practical might give unacceptable bias.

• “not anticipated to be applicable to real high-dimensional problems”

• “it is far from clear whether this simple algorithm is of immediate
practical utility in the most complex real-world applications”

Thus we look for algorithms without this weakness which also have
provable scalability.
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Plug-and-play methods for implicit models

• We address stochastic dynamic models where a simulator is available,
but transition densities are not readily accessible.

• These models have been called implicit (Diggle and Gratton, 1984).

• An algorithm that uses a simulator but not transition densities is called
plug-and-play (Bretó et al., 2009; He et al., 2010).

• Plug-and-play methods can be applied to implicit models.

• Similar ideas have been called equation-free and likelihood-free.

• BPF is plug-and-play.

• We now consider another scalable simple plug-and-play filter with
different strengths and weaknesses to BPF.
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Algorithm 1: Unadapted bagged filter (UBF).

input: simulator for fXn|Xn−1
(xn |xn−1) and fX0(x0); evaluator for

fYu,n|Xu,n
(yu,n |xu,n); data, y∗1:N ; number of replicates, I;

neighborhood structure, Bu,n

for i in 1 :I do
initialize simulation, X0,i ∼ fX0(·)
for n in 1 :N do

simulate, Xn,i ∼ fXn|Xn−1

(
· |Xn−1,i

)
measurement weights, wM

u,n,i = fYu,n|Xu,n

(
y∗u,n |Xu,n,i

)
prediction weights, wP

u,n,i =
∏

(ũ,ñ)∈Bu,n
wM
ũ,ñ,i

end

end

`MC
u,n = log

(∑I
i=1w

M
u,n,iw

P
u,n,i

)
− log

(∑I
i=1w

P
u,n,i

)
output: log likelihood estimate, `MC =

∑N
n=1

∑U
u=1 `

MC
u,n
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Bagged filters

• Bagging is bootstrap aggregating. The goal is to gain strength from
many boostrap replicates.

• Simulating from a postulated model is a simple parametric bootstrap.

• To obtain scalability, we use local weights to aggregate the bootstrap
replicates.

• The unadapted bagged filter is a fancy name for a simple algorithm. We
view it a starting point for adapted bagged filters.
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The unadapted bagged filter is not entirely naive

• UBF seems naive. Particle filter (PF) method are well known to scale
better with N than unconditional simulations.

• With modern computers, large numbers of simulations are feasible even
when U and N are not small.

• Initially we studied UBF as a theoretical toy, since it is relatively easy to
show theoretically that it can beat the curse of dimensionality as U
increases, for weakly coupled systems. Then we found it is competitive in
practice on some models of interest.
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Adapted simulation: An easier problem than filtering

• We aim to make each replicate track the data in a weak sense, easier
and more scalable than solving the full filtering problem.

• The adapted simulation problem is to draw from
fXn|Y n,Xn−1

(
xn |y∗n,xn−1

)
.

• The adapted bagged filter (ABF) algorithm uses importance sampling to
carry out adapted simulation on each replicate, with a sample size J .

• Importance sampling for adapted simulation does NOT beat the curse of
dimensionality. We combine it with intermediate resampling to give
scalability.

• ABF calculates the likelihood using the proper weight restricted to a
neighborhood.
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.

ABF. Adapted bagged filter.

Initialize adapted simulation: XA
0,i ∼ fX0(x0)

For n in 1 :N

Proposals: XP
n,i,j ∼ fXn|Xn−1

(
xn |XA

n−1,i
)

Measurement weights: wM
u,n,i,j = fYu,n|Xu,n

(
y∗u,n |XP

u,n,i,j

)
Adapted resampling weights: wA

n,i,j =
∏U

u=1w
M
u,n,i,j

Resampling: P
[
r(i) = a

]
= wA

n,i,a

(∑J
k=1w

A
n,i,k

)−1
XA

n,i = XP
n,i,r(i)

wP
u,n,i,j =

n−1∏
ñ=1

[ 1

J

J∑
k=1

∏
(ũ,ñ)∈B[ñ]

u,n

wM
ũ,ñ,i,k

] ∏
(ũ,n)∈B[n]

u,n

wM
ũ,n,i,j

End for

`MC
u,n = log

(∑I
i=1

∑J
j=1w

M
u,n,i,jw

P
u,n,i,j∑I

i=1

∑J
j=1w

P
u,n,i,j

)
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Intermediate resampling

• Intermediate resampling splits the time interval between observations
into S subintervals.

• Reweighting and/or sampling at each subinterval uses a revised estimate
of the anticipated measurement density at the end of the interval called a
guide function.

• This is applicable to continuous time models.

• Intermediate resampling has useful theoretical and empirical properties
(Del Moral and Murray, 2015; Park and Ionides, 2020).

• Intermediate resampling for adapted simulation within ABF gives the
ABF-IR algorithm.

• Intermediate resampling within PF gives the guided intermediate
resampling filter (GIRF) of Park and Ionides (2020), a generalization of
the auxiliary particle filter of Pitt and Shepard (1999).
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A guide function for intermediate resampling

• Intermediate resampling with an ideal guide function can beat the curse
of dimensionality (Park and Ionides, 2020).

• It is consistent for any guide function, but scalability is limited in
practice since the ideal guide is generally intractable.

• In practice, we use moment-matching to approximate the ideal guide for
Gaussian models.

• Additional algorithmic parameters:

number of intermediate timesteps, S
measurement variance parameterizations,

←
vu,n and

→
vu,n

approximate process and observation mean functions, µ and hu,n

• Guided intermediate resampling is plug-and-play: it does not need
evaluation of transition densities.
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ABF-IR. ABF with intermediate resampling.

Initialize adapted simulation: XA
0,i ∼ fX0(x0)

For n in 1 :N

Guide simulations: XG
n,i,j ∼ fXn|Xn−1

(
xn |XA

n−1,i
)

Guide variance: Vu,n,i = Var
{
hu,n

(
XG

u,n,i,j

)
, j in 1:J

}
gRn,0,i,j = 1 and XIR

n,0,i,j = XA
n−1,i

For s in 1 :S

Intermediate proposals: XIP
n,s,i,j ∼ fXn,s|Xn,s−1

(
· |XIR

n,s−1,i,j
)

µIP
n,s,i,j = µ

(
XIP

n,s,i,j , tn,s, tn
)

V meas
u,n,s,i,j =

→
v u(θ, µIPu,n,s,i,j) , V proc

u,n,s,i = Vu,n,i
(
tn − tn,s

)/(
tn − tn,0

)
θu,n,s,i,j =

←
v u

(
V meas
u,n,s,i,j + V proc

u,n,s,i, µ
IP
u,n,s,i,j

)
gn,s,i,j =

∏U
u=1 fYu,n|Xu,n

(
y∗u,n |µIPu,n,s,i,j ;θu,n,s,i,j

)
Guide weights: wG

n,s,i,j = gn,s,i,j
/
gRn,s−1,i,j

Resampling: P
[
r(i, j) = a

]
= wG

n,s,i,a

(∑J
k=1w

G
n,s,i,k

)−1
XIR

n,s,i,j = XIP
n,s,i,r(i,j) and gRn,s,i,j = gn,s,i,r(i,j)

End For

Set XA
n,i = XIR

n,S,i,1

Measurement weights: wM
u,n,i,j = fYu,n|Xu,n

(
y∗u,n |XG

u,n,i,j

)
wP
u,n,i,j =

n−1∏
ñ=1

[ 1

J

J∑
a=1

∏
(ũ,ñ)∈B[ñ]

u,n

wM
ũ,ñ,i,a

] ∏
(ũ,n)∈B[n]

u,n

wM
ũ,n,i,j

End for

`MC
u,n = log

(∑I
i=1

∑J
j=1w

M
u,n,i,jw

P
u,n,i,j∑I

i=1

∑J
j=1w

P
u,n,i,j

)
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Software for SpatPOMP models

• We use the asif, asifir, bpfilter, enkf and girf implementations
in the R package spatPomp (Asfaw et al., 2019).

• All these algorithms are plug-and-play. This facilitates implementations
applicable to a wide class of models: SpatPOMPs that can be simulated.

• spatPomp offers a class ‘spatPomp’ that extends the ‘pomp’ class for
POMP models in the R package pomp (King et al., 2016).

• All methods available in pomp can formally be applied to ‘spatPomp’
objects, though they may not be practically effective for spatiotemporal
POMPs.
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Filtering U -dimensional correlated Brownian motion
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Filtering U units of a coupled measles SEIR model
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Simulated data using a gravity model with geography, demography and
transmssion parameters corresponding to UK pre-vaccination measles.
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Filtering U units of Lorenz 96 toy atmospheric model
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dXu(t) =
{
Xu−1(t)

(
Xu+1(t)−Xu−2(t)

)
−Xu(t) + F

}
dt+ σ dBu(t)
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From filtering to parameter inference

• Log likelihood evaluation in principle enables likelihood-based or
Bayesian inference.

• Iterated filtering for PF (Ionides et al., 2015) and GIRF (Park and
Ionides, 2020) maximizes the likelihood by randomly perturbing the
parameters.

• Particle Markov chain Monte Carlo can be applied with any likelihood
estimate (Andrieu et al., 2010). It is numerically intractable when Monte
Carlo estimates are costly and noisy.

• Iterated filtering is harder for bagged filters; it is possible but expensive
(Ionides et al., 2021).

• Iterated filtering works well for BPF when parameters are unit-specific,
i.e., each city has its own parameters (Ning and Ionides, 2021). It also
can work with shared parameters (current unpublished work).
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An iterated block particle filter for unit-specific parameters
The IBPF algorithm

Initialize: model&parameters

Perturb: parameters

Predict: stochastic dynamics

Reweight ReweightReweight

Resample
state

Resample
state

Resample
state

Resample
param.

Resample
param.

Resample
param.

n = 1:N

Recombine

m = 1:M

Blockwise

1

22



Measles likelihood slices for coupling parameter, G
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Simulating 15 year of data from
U = 40 cities for the measles model.
Slice likelihood, varying G with other
paramters fixed at the truth.

A. Evaluation using ABF.

B. Evaluation using BPF.

C. Evaluation using EnKF.
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Convergence of UBF, ABF & ABF-IR (Ionides et al., 2021)

Theorem

Let `MC denote the Monte Carlo likelihood approximation constructed by
UBF, ABF or ABF-IR. Consider a limit with a growing number of
replicates, I → ∞. Suppose regularity assumptions listed in the paper.
There are quantities ε(U,N) = O(1) and V (U,N) = O(U2N2) such that

I1/2
[
`MC − `− εUN

] d−−−→
I→∞

N
[
0, V

]
,

where
d−−−→

I→∞
denotes convergence in distribution and N [µ,Σ] is the

normal distribution with mean µ and variance Σ. If an additional
spatiotemporal mixing assumption holds, we obtain an improved variance
bound

V (U,N) = O(UN)
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Future work

• We are getting close to the point where we can carry out likelihood-based
inference for a flexible class of SpatPOMP models for measles. Flexibility
supports generation and testing of scientific hypotheses.

• Measles was previously a motivating model system for POMP methods
for single populations.

• Many systems in ecology, epidemiology and elsewhere could be studied
in a SpatPOMP framework (Bjørnstad and Grenfell, 2001).
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