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Outline

1. Historical overview: a decade of progress on time series analysis via

mechanistic models.

2. Some practical considerations: relationship between statistical

methodology and software.

3. The plug-and-play property: iterated filtering and other plug-and-play

approaches.

4. Case studies: malaria, measles and HIV.

5. Outstanding challenges.
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Six problems of Bjørnstad and Grenfell (Science, 2001)

Obstacles for ecological inference via nonlinear mechanistic models:

1. Combining measurement noise and process noise.

2. Including covariates in mechanistically plausible ways.

3. Continuous time models.

4. Modeling and estimating interactions in coupled systems.

5. Dealing with unobserved variables.

6. Modeling spatial-temporal dynamics.
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From the perspective of 2001...

Wanted:

A framework for modeling and inference al-

lowing consideration of arbitrary nonlinear,

partially observed, vector-valued, time series

models.
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Partially observed Markov process (POMP) models have been

repeatedly proposed as an approach to combining modeling

and inference for biological systems

• The Markov property—all information about future dynamics of the

system is in the current state—is natural for mechanistic modeling. If

some variable is relevant to the dynamics, add it to the state!

• General-purpose software has been a challenge for stastistcal inference

using non-linear non-Gaussian POMPs:

¦ WinBUGS performs poorly on these models.

¦ pomp, an R package for POMPs, is recently available.
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Partially Observed Markov Process (POMP) notation

The unobserved Markov dynamic process is denoted X(t). For

observation times t1, . . . , tN we write Xn = X(tn). The observable

variables Y1, . . . , YN are conditionally independent given X1, . . . , XN .

The model depends on an unknown parameter vector θ.

• To think algorithmically, we define some function calls:

rprocess( ): a draw from fXn|Xn−1
(xn |xn−1 ; θ)

dprocess( ): evaluation of fXn|Xn−1
(xn |xn−1 ; θ)

rmeasure( ): a draw from fYn|Xn
(yn |xn ; θ)

dmeasure( ): evaluation of fYn|Xn
(yn |xn ; θ)
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Plug-and-play inference for POMP models

• An algorithm operating on a POMP is plug-and-play if it involves calls to

rprocess but not to dprocess, and so code simulating sample paths is

‘plugged’ into the inference software.

• Bayesian plug-and-play:

1. Particle MCMC (Andrieu et al, J. Roy. Statist. Soc. B, 2010)

2. ABC (Approximate Bayesian Computation; Toni et al, Interface, 2009)

3. Artificial parameter evolution (Liu and West, 2001)

• Non-Bayesian plug-and-play:

4. Simulation-based prediction rules (Kendall et al, Ecology, 1999)

5. Simulated likelihood of summary statistics (Wood, Nature, 2010)

6. Iterated filtering (Ionides et al, PNAS, 2006)

Plug-and-play is a VERY USEFUL PROPERTY for scientific work.
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Classification of methodologies by required operations

rprocess dprocess rmeasure dmeasure

EM via SMC 4 4 7 4

MCMC 7 4 7 4

Iterated filtering 4 7 7 4

Particle MCMC 4 7 7 4

Liu-West SMC 4 7 7 4

Nonlinear forecasting 4 7 4 7

ABC 4 7 4 7

Probe matching 4 7 4 7

• Textbook EM and MCMC methods are not plug-and-play.

• Nonlinear forecasting and probe matching are simulation-based

techniques developed by scientists, likely due to the inapplicability of

standard EM and MCMC techniques.



9

Plug-and-play in other settings

• Optimization. Methods requiring only evaluation of the objective

function to be optimized are sometimes called gradient-free. This is the

same concept as plug-and-play: the code to evaluate the objective

function can be plugged into the optimizer.

• Complex systems. Methods to study the behavior of large numerical

simulations (e.g., molecular models for phase transitions) that only

employ the underlying code as a “black box” to generate simulations are

called equation-free (Kevrekidis et al., 2003, 2004).

• ABC and MCMC. Plug-and-play methods have recently been called

likelihood-free. In this terminology, iterated filtering does likelihood-free

likelihood-based inference.
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The cost of plug-and-play

• Approximate Bayesian methods and simulated moment methods lead to

a loss of statistical efficiency.

• In contrast, iterated filtering enables (almost) exact likelihood-based

inference.

• Improvements in numerical efficiency may be possible when analytic

properties are available (at the expense of plug-and-play). But many

interesting dynamic models are analytically intractable—for example, it is

standard to investigate systems of ordinary differential equations

numerically.
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Summary of plug-and-play inference via iterated filtering

• Filtering is the extensively-studied problem of calculating the conditional

distribution of the unobserved state vector xt given the observations up

to that time, y1, y2, . . . , yt.

• Iterated filtering algorithms use a sequence of solutions to the filtering

problem to maximize the likelihood function over unknown model

parameters (proposed by Ionides, Bretó & King; PNAS, 2006).

• Sequential Monte Carlo (SMC) provides a plug-and-play filter. The

plug-and-play property property is inherited by SMC-based

implementations of iterated filtering and PMCMC.



12

Example: malaria (mosquito-transmitted Plasmodium infection)
Malaria_Life_Cycle.gif (GIF Image, 543x435 pixels) http://medpediamedia.com/u/Malaria_Life_Cycle.g...

1 of 1 07/19/2010 12:06 PM

Despite extensive study of the disease system (mosquito, Plasmodium &

human immunology) malaria epidemiology remains hotly debated.
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Malaria: A global challenge

• The Gates Foundation targets eradication. The previous Global Malaria

Eradication Program (1955-1969) ultimately failed, though with some

lasting local successes.

• Malaria transmission dynamics have much local variation (vectors and

their ecology; human behaviors).

From the perspective of statistical methodology

• Despite the huge literature, no dynamic model of malaria transmission

has previously been fitted directly to time series data.

• Difficulties include: Incomplete and complex immunity; dynamics in both

mosquito and human stages; non-specific diagnosis via fever.

• Malaria is beyond the scope of methods developed for simpler diseases.
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Malaria and rainfall in Kutch (an arid region of NW India)
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• To what extent are cycles driven by immunity rising and falling? To what

extent are they driven by rainfall?
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(Laneri et al, PLoS Comp. Biol., 2010; Bhadra et al, JASA, 2011)

µS1E , force of infection; λ, latent force of infection; S1, fully susceptible

humans; S2 clinically protected (partially immune); I1, clinically infected;

I2, asymptomatically infected.

Minimal complexity acceptable to scientists

≈ Maximal complexity acceptable to available data
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Model representation: coupled SDEs driven by Lévy noise

dS1/dt = µBS1P − µS1ES1 + µI1S1I1 + µS2S1S2 − µS1DS1

dS2/dt = µI2S2I2 − µS2S1S2 − µS2I2S2 − µS2DS2

dE/dt = µS1ES1 − µEI1E − µEDE

dI1/dt = µEI1E − µI1S1I1 − µI1I2I1 − µI1DI1

dI2/dt = µI1I2I1 + µS2I2S2 − µI2S2I2 − µI2DI2

dλi/dt = (λi−1 − λi) k τ−1 for i = 1, . . . , k

µS1E(t) = λk(t)

λ(t) = λ0(t) =
I1(t) + qI2(t)

N(t)
exp

{ ns∑

i=1

βisi(t) + Ztβ
}dΓ

dt
.

Zt is a vector of climate covariates (here, rainfall).∑ns
i=1 βisi(t) is a spline representation of seasonality.

Parasite latency within the vector has mean τ and shape parameter k.
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Conclusions from malaria data analysis

• Rainfall (with an appropriate delay and threshold) a critical role in

determining interannual cycles.

• Immunity has a minor role, at a fast timescale (limiting annual peaks)
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Stochastic differential equations (SDEs) vs. Markov chains

• SDEs are a simple way to add stochasticity to widely used ordinary

differential equation models for population dynamics.

• When some species have low abundance (e.g. fade-outs and

re-introductions of diseases within a population) discreteness can

become important.

• This motivates the consideration of discrete population, continuous time

POMP models (Markov chains).
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Over-dispersion in Markov chain models of populations

• Remarkably, in the vast literatures on continuous-time

individual-based Markov chains for population dynamics (e.g.

applied to ecology and chemical reactions) no-one has previously

proposed models capable of over-dispersion.

• It turns out that the usual assumption that no events occur

simultaneously creates fundamental limitations in the statistical properties

of the resulting class of models.

• Over-dispersion is the rule, not the exception, in data.

• Perhaps this discrepancy went un-noticed before statistical techniques

became available to fit these models to data.
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Implicit models for plug-and-play inference

• Adding “white noise” to the transition rates of existing Markov chain

population models would be a way to introduce an infinitesimal variance

parameter, by analogy with the theory of SDEs.

• We do this by defining our model as a limit of discrete-time models.

We call such models implicit. This is backwards to the usual approach

of checking that a numerical scheme (i.e. a discretization) converges to

the desired model.

• Implicit models are convenient for numerical solution, by definition, and

therefore fit in well with plug-and-play methodology.

• Details in Bretó et al (2009, AoAS); Bretó & Ionides (2011, Stoc. Proc.

Appl.).
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Measles: an exhaustively studied system

• Measles is simple: direct infection of susceptibles by infecteds;

characteristic symptoms leading to accurate clinical diagnosis; life-long

immunity following infection.

S -µSE(t)ξSE(t)
E -µEI

I -µIR
R

Susceptible→ Exposed (latent) → Infected → Recovered,

with noise intensity σSE on the force of infection.

• Measles is still a substantial health issue in sub-Saharan Africa.

• A global eradication program is under debate.

• Comprehensive doctor reports in western Europe and America before

vaccination (≈ 1968) are textbook data.
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• Measles cases in London 1944–1965 (circles and red lines) and a

deterministic SEIR fit (blue line) (from Grenfell et al, 2002).

• A deterministic fit, specified by the initial values in January 1944,

captures remarkably many features.
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Is demographic stochasticity (σSE = 0) plausible?

• Profile likelihood for σSE and effect on estimated latent period (L.P.) and

infectious period (I.P.) for London, 1950–1964.

• Variability of≈ 5% per year on the infection rate substantially improves

the fit, and affects scientific conclusions (He et al, JRSI, 2010).
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Interpretation of over-dispersion

• Social and environmental events (e.g., football matches, weather) lead

to stochastic variation in rates: environmental stochasticity.

• A catch-all for model misspecification? It is common practice in linear

regression to bear in mind that the “error” terms contain un-modeled

processes as well as truly stochastic effects. This reasoning can be

applied to dynamic models as well.
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Longitudinal analysis via mechanistic models

• Multiple short time series can also be related to mechanistic hypotheses

via POMP models, e.g.

¦ within-host pathogen dynamics.

¦ progression of chronic diseases.

¦ behavorial studies.

• Plug-and-play methods facilitate the develpment and analysis of novel

models, though alternatives such as MCMC and EM may also be viable

for short time series.
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Dynamics of sexual behaviors related to HIV risk

• The Koopman group has found that models with dynamic variation in

sexual behaviors, with individuals having high and low risk episodes, can

lead to much higher transmission than static heterogeneity models.

• Romero-Severson et al. used a POMP framework to re-analyze data

from a cohort study of men who have sex with men (MSM), looking to

quantify empirical evidence for dynamic variation.

• Behavioral data count reported contacts during 4 intervals of 6 months

each. We study either total contacts or disaggregation by contact type.
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Data. Reported MSM contacts yij for individual i from time tj−1 to tj .

Individual-level random effects:

Ri ∼ Γ(µR, σR), rate of changing behavior.

Di ∼ Γ(µD, σD), over-dispersion of behavior.

Latent dynamic behavior process:

Xi(t) is piecewise constant. After a Exponential(Ri) time interval,

Xi(t) jumps to an independent Γ(µX , σX) value.

Measurement model:

µij = αj−1

∫ tj

tj−1

Xi(t) dt, where α models the decreasing contact rate.

yij ∼ NegBin(µij , Di).

Γ(µ, σ) is the Gamma distribution with mean µ and variance σ2.

NegBin(µ,D) is negative binomial with mean µ and variance µ+µ2D2.
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Maximum likelihood estimates for six models of total contacts

Model µX σX µD σD µR σR α Log Lik.

1 1.61 – 0.31 – – – 1 -10288.3

2 1.73 – 0.6 0.67 – – 0.99 -9935.5

3 1.62 2.11 0.76 – – – 0.99 -9772.9

4 1.73 1.89 1.53 1.82 – – 0.99 -9605.6

5 1.82 2.66 3.63 4.32 0.04 – 0.94 -9555.8

6 1.73 2.6 3.34 3.68 0.04 0.01 0.96 -9557.4

• µR ≈ 0.04 gives a mean episode duration of 25 months, implying ≈ 1
transition per individual over the study period.

• The likelihoods imply that the only unnecessary parameter is σR. The

small inconsistency of−9557.4 with the nesting of model 5 within 6 is

Monte Carlo error in likelihood optimization and/or evaluation.
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Profile likelihoods show consistent results across contact types

• e.g., profiles

for parameters

of model 5, fit-

ted to insertive

contacts.

• As expected, data are highly informative about µX and σX . Other

parameters are identified with adequate precision.
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Conclusions and outstanding challenges

• Plug-and-play statistical methodology permits likelihood-based analysis

of flexible classes of stochastic dynamic models.

• Many models of interest are beyond current algorithms & computational

resources. Much work remains to be done!

• New data types (e.g., genetic sequence data on pathogens for some or

all infected hosts) both enable and require the fitting of more complex

models.

• Spatio-temporal models and individual-level models in large populations

are typically beyond the scope of current plug-and-play methods, unless

some special model structure can be exploited.
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Thank you!

These slides (including references for the citations) are available at

www.stat.lsa.umich.edu/∼ionides



33

References

Andrieu, C., Doucet, A., and Holenstein, R. (2010). Particle Markov chain Monte Carlo

methods. Journal of the Royal Statistical Society, Series B (Statistical Methodology),

72:269–342.
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