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Overview

1 Introduction to iterated filtering methodology.

2 A new iterated filtering algorithm (IF2).

3 Theoretical justification of IF2.

4 Applications of IF2.



Partially observed Markov process (POMP) models

Data y∗1 , . . . , y
∗
N collected at times t1 < · · · < tN are modeled as noisy

and incomplete observations of a Markov process {X (t), t ≥ t0}.
This is a partially observed Markov process (POMP) model, also
known as a hidden Markov model or a state space model.

The POMP model may depend on an unknown parameter vector, θ.

Scientific uses of POMP models are too numerous to list. They
include many applications to biological systems, rocket science,
economics, geophysical systems, etc.



Sequential Monte Carlo (SMC) methods for POMP models

Filtering is estimation of the latent dynamic process X (tn) given data
y∗1 , . . . , y

∗
N for a fixed POMP model, i.e., with parameter θ assumed

known.

Sequential Monte Carlo (SMC) is a numerical method for filtering
and evaluating the likelihood function.

SMC is also called a “particle filter.”

Filtering has extensive applications in science and engineering. Over
the last 15 years, SMC has become popular for filtering non-linear,
non-Gaussian partially observed Markov process (POMP) models.



A brief history of Monte Carlo methods

The basic Monte Carlo method approximates∫
h(x) f (x) dx ≈ 1

J

∑J
j=1 h(Xj), where Xj ∼ f .

For high-dimensional integration, Markov chain Monte Carlo
(MCMC) draws Xj ∼ f by setting up a Markov chain with stationary
distribution f .

Sequential Monte Carlo (SMC) breaks down the high-dimensional
integration problem into a sequence of lower-dimension problems.

SMC was called “Poor man’s Monte Carlo” by Hammersley (1954).
The theory and practice of SMC is now comparable to MCMC.

To simulate the 3D structure of a molecule with 1000 atoms, MCMC
transitions adjust the position of all 1000 atoms; SMC builds up the
molecule one atom at a time.



What is iterated filtering?

Iterated filtering algorithms adapt sequential Monte Carlo (SMC) into
a tool for inference on the unknown parameter vector, θ.

We call IF1 the iterated filtering algorithm of Ionides, Bretó & King
(2006). IF1 uses an extended POMP model where θ is replaced by a
time-varying process θ(t) which follows a random walk. SMC filtering
on this model can approximate the derivative of the log likelihood.

Novel algorithms were needed because two “obvious” approaches to
parameter inference via SMC fail in all but simple problems:

Apply a black-box optimizer such as Nelder-Mead to the SMC
evaluation of the likelihood.
Carry out Bayesian inference by SMC with θ added to the POMP as a
static parameter.

Standard MCMC and EM algorithms also work poorly on POMP
models.



Dobson, A. (2014). Mathematical models for emerging
disease. Science 346:1294–1295

“Powerful new inferential fitting methods (Ionides, Bretó and King,
2006) considerably increase the accuracy of outbreak predictions
while also allowing models whose structure reflects different
underlying assumptions to be compared. These approaches move well
beyond time series and statistical regression analyses as they include
mechanistic details as mathematical functions that define rates of loss
of immunity and the response of vector abundance to climate.”



Notation for partially observed Markov process models

Write Xn = X (tn) and X0:N = (X0, . . . ,XN). Let Yn be a random
variable modeling the observation at time tn.

The one-step transition density, fXn|Xn−1
(xn | xn−1 ; θ), together with

the measurement density, fYn|Xn
(yn | xn ; θ) and the initial density,

fX0(x0 ; θ), specify the entire joint density via

fX0:N ,Y1:N
(x0:N , y1:N ; θ) = fX0(x0; θ)

N∏
n=1

fXn|Xn−1
(xn|xn−1; θ) fYn|Xn

(yn|xn; θ).

The likelihood function is

`(θ) = fY1:N
(y∗1:N ; θ) =

∫
fX0:N ,Y1:N

(x0:N , y
∗
1:N ; θ) dx0:N



Input and output for the IF2 algorithm

input:
Simulator for latent process initial density, fX0(x0 ; θ)

Simulator for transition density, fXn|Xn−1
(xn | xn−1 ; θ), n in 1 :N

Evaluator for measurement density, fYn|Xn
(yn | xn ; θ), n in 1 :N

Data, y∗1:N
Number of iterations, M

Number of particles, J

Initial parameter swarm, {Θ0
j , j in 1 : J}

Perturbation density, hn(θ |ϕ ;σ), n in 1 :N

Perturbation sequence, σ1:M

output: Final parameter swarm, {ΘM
j , j in 1 : J}

Algorithms that specify the dynamic model via a simulator are said to be
plug-and-play. This property ensures applicability to the broad class of
models for which a simulator is available.



IF2: iterated SMC with perturbed parameters

For m in 1 :M [M filtering iterations, with decreasing σm]

ΘF ,m
0,j ∼ h0( · |Θm−1

j ;σm) for j in 1 : J

X F ,m
0,j ∼ fX0(x0; ΘF ,m

0,j ) for j in 1 : J

For n in 1 :N [SMC with J particles]

ΘP,m
n,j ∼ hn( · |ΘF ,m

n−1,j , σm) for j in 1 : J

XP,m
n,j ∼ fXn|Xn−1

(xn |X F ,m
n−1,j ; ΘP,m

j ) for j in 1 : J

wm
n,j = fYn|Xn

(y∗n |X
P,m
n,j ; ΘP,m

n,j ) for j in 1 : J

Draw k1:J with P(kj = i) = wm
n,i

/∑J
u=1 w

m
n,u

ΘF ,m
n,j = ΘP,m

n,kj
and X F ,m

n,j = XP,m
n,kj

for j in 1 : J

End For

Set Θm
j = ΘF ,m

N,j for j in 1 : J

End For



IF2: iterated SMC with perturbed parameters

For m in 1 :M

ΘF ,m
0,j ∼ h0( · |Θm−1

j ;σm) for j in 1 : J

X F ,m
0,j ∼ fX0(x0; ΘF ,m

0,j ) for j in 1 : J

[carry out SMC on an extended model, with the time-varying

parameters included in the latent state, initialized at (X F ,m
0,j ,ΘF ,m

0,j )]

Set Θm
j = ΘF ,m

N,j for j in 1 : J

End For



Numerical examples

We compare IF1, IF2 and the particle Markov chain Monte Carlo
(PMCMC) method of Andrieu et al (2010).

PMCMC is an SMC-based plug-and-play algorithm for
full-information Bayesian inference on POMPs.

Computations were done using the pomp R package:

King, Nguyen & Ionides (2015). “Statistical inference
for partially observed Markov processes via the R pack-
age pomp.” To appear in Journal of Statistical Soft-
ware. Available at http://kingaa.github.io/pomp/

vignettes/pompjss.pdf

Data and code reproducing our results are a supplement to

Ionides, Nguyen, Atchadé, Stoev & King (2015). “Infer-
ence for dynamic and latent variable models via iterated,
perturbed Bayes maps.” Proceedings of the National
Academy of Sciences of the USA.

http://kingaa.github.io/pomp/vignettes/pompjss.pdf
http://kingaa.github.io/pomp/vignettes/pompjss.pdf


Toy example.

X (t) =
(

exp{θ1}, θ2 exp{θ1}
)
,

constant for all t.

100 independent observations:
Given X (t) = x ,

Yn∼Normal

[
x ,

(
100 0

0 1

)]
.

A. IF1 point estimates from 30 replications and the MLE (green triangle).
B. IF2 point estimates from 30 replications and the MLE (green triangle).
C. Final parameter value of 30 PMCMC chains with 104 filtering iterations.
D. Kernel density estimates from 8 of these 30 PMCMC chains, and the
true posterior distribution (dotted black line).



Why is IF2 so much better than IF1 on this problem?

IF1 updates parameters by a linear combination of filtered parameter
estimates for the extended model with time-varying parameters.

Taking linear combinations can knock the optimizer off nonlinear
ridges of the likelihood function.

IF2 does not have this vulnerability.

A heuristic argument suggests that IF2 has 2nd order convergence (as
if the 1st and 2nd derivatives were computable) whereas IF1 has 1st
order convergence. It is an open problem to formalize that.



Epidemiological applications: A review of disease dynamics

Communicable diseases have long had major global health impact
(malaria, tuberculosis, measles, etc).

Emerging diseases need to be understood and controlled (HIV, Ebola,
bird flu, SARS, etc).

Central to math models is an infected population, I (t), which
interacts with a susceptible population, S(t). Susceptible individuals
become infected at a nonlinear rate β I (t)S(t), where β is a contact
rate.

The inherent stochasticity of biological populations, and our partial
ability to observe epidemics, therefore lead to nonlinear POMP model
inference problems.



Application to a cholera model

The study population P(t) is split into susceptibles, S(t), infecteds, I (t),
and k recovered classes R1(t), . . . ,Rk(t). The state process
X (t) = (S(t), I (t),R1(t), . . . ,Rk(t)) follows a stochastic differential
equation driven by a Brownian motion {B(t)},

dS =
{
kεRk + δ(P − S)− λ(t)S

}
dt + dP − (σI/P) dB,

dI =
{
λ(t)S − (m + δ + γ)I

}
dt + (σI/P) dB,

dR1 =
{
γI − (kε+ δ)R1

}
dt,

...
dRk =

{
kεRk−1 − (kε+ δ)Rk

}
dt.

The nonlinearity arises through the force of infection, λ(t), specified as

λ(t) = β̄ exp
{
βtrend(t − t0) +

∑Ns
j=1 βjsj(t)

}
I/P + ω̄ exp

{∑Ns
j=1 ωjsj(t)

}
,

where {sj(t), j = 1, . . . ,Ns} is a periodic cubic B-spline basis. The data
are monthly counts of cholera mortality, modeled as

Yn ∼ Normal(Mn, τ
2M2

n) for Mn =
∫ tn
tn−1

m I (s) ds.



Monthly cholera mortality in Dhaka, 1891-1940
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Comparison of IF1 and IF2
on the cholera model.

Algorithmic tuning parame-
ters for both IF1 and IF2
were set at the values cho-
sen by King et al (2008) for
IF1.

Log likelihoods of the parameter vector output by IF1 and IF2, both
started at a uniform draw from a large 23-dimensional
hyper-rectangle.

Dotted lines show the maximum log likelihood.



IF2 as an iterated Bayes map

Each iteration of IF2 is a Monte Carlo approximation to a map

Tσf (θN) =

∫
˘̀(θ0:N)h(θ0:N |ϕ ;σ)f (ϕ) dϕ dθ0:N−1∫

˘̀(θ0:N)h(θ0:N |ϕ ;σ)f (ϕ) dϕ dθ0:N
, (1)

where ˘̀(θ0:N) is the likelihood of the data under the extended model
with time-varying parameter θ0:N .

f and Tσf in (1) approximate the initial and final density of the IF2
parameter swarm.

When the standard deviation of the parameter perturbations is held
fixed at σm = σ > 0, IF2 is a Monte Carlo approximation to TM

σ f (θ).

Iterated Bayes maps are not usually contractions.

We study the homogeneous case, σm = σ.

Studying the limit σ → 0 may be as appropriate as an asymptotic
analysis to study the practical properties of a procedure such as IF2,
with σm decreasing down to some positive level σ > 0 but never
completing the asymptotic limit σm → 0.



IF2 as a generalization of data cloning

In the case σ = 0, the iterated Bayes map corresponds to the data
cloning approach of Lele (2007).

For σ = 0, Lele et al (2007) found central limit theorems. For σ 6= 0,
the limit as M →∞ is not usually Gaussian.

Taking σ 6= 0 adds numerical stability, which is necessary for
convergence of SMC approximations.



Theorem 1. Assuming adequate regularity conditions, there is a unique
probability density fσ with

lim
M→∞

TM
σ f = fσ,

with the limit taken in the L1 norm. The SMC approximation to TM
σ f

converges to TM
σ f as J →∞, uniformly in M.

Theorem 1 follows from existing results on filter stability.

Convergence and stability of the ideal filter (a small error at time t
has diminishing effects at later times) is closely related to
convergence of SMC.



Theorem 2. Under regularity conditions, limσ→0 fσ approaches a point
mass at the maximum likelihood estimate (MLE).

Outline of proof.

Trajectories in parameter space which stray away from the MLE are
down-weighted by the Bayes map relative to trajectories staying close
to the MLE.

As σ decreases, excursions any fixed distance away from the MLE
require an increasing number of iterations and therefore receive an
increasing penalty from the iterated Bayes map.

Bounding this penalty proves the theorem.



Conclusions

IF1 enabled previously unfeasible likelihood-based inference for
nonlinear, non-Gaussian POMP models.

We have not yet found a situation where IF2 performs worse than
IF1. In complex nonlinear models, we have found IF2 always
substantially better.

In addition, IF2 is simpler. Some extensions are easier: IF2 can readily
handle parameters for which the information in the data is
concentrated in a sub-interval.

If you like IF1, you’ll love IF2.

IF2, together with advances in software and hardware, makes inference
for nonlinear POMP models readily accessible to Masters level
statisticians. Evidence: a short coure on Simulation-based Inference
for Epidemiological Dynamics (http://kingaa.github.io/sbied).

http://kingaa.github.io/sbied


Current and future work

Existing sequential Monte Carlo (SMC) methods fail in
high-dimensional systems, such as space-time modeling. Can this be
resolved? Does iterated filtering help with inference?

Genetic sequence data on pathogens should be informative about
disease transmission dynamics. This challenge leads to models that
are not quite POMPs, but SMC and IF2 are applicable.

The iterated Bayes map results underlying IF2 apply to general latent
variable models, not just POMPs. Could IF2-like algorithms assist
challenges such as inference for big hierarchical random effect models?

Big data: nowadays one often has many time series. Iterated filtering
extends to mechanistic models for panel, or longitudinal, data:

Romero-Severson et al. (2015). “Dynamic variation in sexual
contact rates for a cohort of HIV-negative urban gay men.”
American Journal of Epidemiology.

A full theory and methodology for this situation is in development.
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More iterated filtering references can be found on Wikipedia

wikipedia.org/wiki/Iterated_filtering

Thank You!

The End.

wikipedia.org/wiki/Iterated_filtering

