
Inferring biological dynamics 101

• An introduction (for those new to the topic).

• A discussion of what should be in an
introduction (for the experienced).

Syllabus

0. Pre-requisites.

1. Fundamental concepts.

(a) Biological modeling.

(b) Statistics.

(c) Computation.

2. Research methods.

3. Case studies.

4. Individual projects.
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0. Pre-requisites

These should be as minimal as possible, but no
more. Nobody wants to say “you have to go back
to basics before you can get started on this.”

• Statistics. An introductory course involving
hypothesis testing and random variables.

• Computing. Familiarity with R is assumed, but
not more advanced R topics such as S4 classes.
Basic familiarity with C is necessary for many
applications. Basic cluster computing
(embarrasingly parallel) is essential for larger
models, but prior experience is not assumed.

• Biological modeling. Some familiarity with
differential equation and Markov chain models.

• Experimental biology. None!

• Persistence. Combining complex biological
dynamic systems with complex nonlinear
stochastic models is seldom routine!
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Biological modeling

Here, a model is a quantitative connection
between a scientific hypothesis (i.e., a question)
and data.

The circularity of scientific progress (questions →
experimentation → conclusions → questions)
suggests that

question driven modeling

should be followed by

model driven questioning.
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• A qualitative model will mean a conceptual
framwork that gives useful abstract insight into a
system, without providing a quantitative
explanation for data. This is a common use of
“model” in other biological settings [6].

• A quantitative model is a candidate
data-generating process for the experiment. Such
a model is appropriate for parameter estimation,
forecasting, or evaluating potential interventions.

• These is a continuum: perhaps only some
aspects of the model and/or data are to be
subjected to quantitative analysis.

• A full-information analysis assesses the
compatibility between all aspects of the data and
the model.

• A feature-based approach compares only
selected aspects.

• This distinction has gray areas. For example,
data are usually processed in some way prior to
analysis, even in a full-information approach.
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Inference: A birds eye view

• Abstractly, a statistical model is a probability
density function f(· | θ) for a vector of potential
observations given an unknown parameter
vector, θ.

• We observe data, y.

• If we reason directly about which values of θ

would be likely to give observations similar to y
then we are doing frequentist inference.

• If we augment the model with a prior π(θ) and
compute the posterior π(θ |y) then we are doing
Bayesian inference.

• Later, we assume an unobserved dynamic
process which gives rise to y. The statistical
model is a distribution for potential observations,
whether or not latent processes are specified.

• An estimator is a map from potential
outcomes to parameter values. Evaluating this
map at the data gives a parameter estimate.
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Models vs. Methods vs. Data

• Ideally, there is a conceptual separation
between choice of model and choice of inference
approach. This is not always clear in practice!

• Examples confounding an estimating method
with a model:
1. “GEE (generalized estimating equation)
model”
2. Comparing a (Bayesian) hierarchical linear
model to a (non-Bayesian) non-hierarchical
linear model.

• We must be careful not to confuse data
with the abstractions we use to analyze
them. William James (1842–1910).

Statistical modeling is a tool to aid
understanding the data, not a substitute for
understanding the data.
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Information in the data

Minimum model com-
plexity acceptable to
scientists

≈
Maximum model com-
plexity estimable from
the data

• We often want to work at the limits of what the
data can tell us.

• Some questions may have clear answers (in the
context of given model assumptions and data)
while others may not.

• Establishing the well-posed questions is part of
the analysis.

• Strong model assumptions (i.e., few parameters
to estimate) may lead to statistically stronger,
but scientifically weaker, conclusions.

• It is possible, and sometimes advisable, to work
with models for which some combinations of
unknown parameters are not estimable from the
data.
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Don’t shoot the messenger!

“The estimated parameter made no scientific
sense, so we fixed it at a plausible value.”Please-dont-shoot-the-messenger.jpg (JPEG Image,... http://witnessla.com/files/2010/08/Please-dont-shoot...

1 of 1 06/26/2012 01:02 PM

• If matching model to data gives uninterpretable
results, there may be some unappreciated aspect
of the model or data (unless there’s a bug!).

• Imposing a canonical biological interpretation
on model parameters is problematic: when we fit
parameters to data, we are letting the data
choose their own interpretation.

• Constraining parameters to stop the model
fitting the data, or even rejecting the parameter
estimation paradigm, are messenger-shooting
responses to avoid the hard work of aligning the
biological and statistical aspects of model fitting.
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The case against fixing parameters

• If the estimated parameter agrees with your
preconceptions, there is no need to fix it.

• If an estimated parameter is noxious to you,
fixing it may result in other biases: remaining
parameters will twist and turn to find the region
of model space that you tried to fence off.

• Consider re-interpreting parameters to include
unmodeled phenomena. This is scientifically
unpleasant, but may be what the data ask for.

Example: measles in small & large towns [4].

• If extra-demographic stochasticity is not
modeled, estimated infectious periods go down
(to increase demographic noise).

• The data prefer to accomodate for unmodeled
spatial aspects by increasing the estimated
duration of infection, rather than via the
inhomogeneity exponent, α.
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The case for fixing parameters

• Parameter values which are uncontroversial
and/or inconsequential can be fixed to simplify
the numerical analysis and model interpretation
(e.g., life expectancy of humans in an SIR
epidemic model).

• Fixing parameters is logically no different from
fixing other aspects of model structure (e.g., the
SIR structure for epidemic models).

• Fixing parameters can complement estimation.
The extent to which the data agree quantitively
with a particular biological story is part of the
point of the modeling exercise!
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The case against prior distributions

• A fairly restrictive prior has the same
disadvantages as fixing parameters, but adds
neither the logical clarity nor simplicity of fixing.

• Broad priors can lead to multiple posterior
modes, or nonlinear ridges. Numerical issues
then force practitioners toward fixing.

• Quantitative prior information on relationships
between parameters is usually unavailable, even
when marginal prior information exists.

• Asserting prior independence of parameters
should not be considered a scientific justification.

• There is no such thing as an objectively flat
prior: a “flat” prior is skewed on a log scale.

• Conclusions can be surprisingly sensitive to the
prior: in the limit as the prior flattens, the Bayes
factor selects a Normal(0, 1) model over a
Normal(θ, 1) whatever the data y. In this case, a
flat prior is fine for computing the posterior.
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The case for prior distributions

• If you have quantitative prior information, you
should use it.

• “If we knew the prior, we’d all be Bayesians!”
(if you philosophically dispute the existence of a
prior, you could still agree with this statement.)

• Computational advances have made Bayesian
inference a flexible framework applicable to
many situations.
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A subjective view

• Parameter fixing is done too often (maybe for
reasons of computational convenience).

• Bayesian inference is done too often (maybe for
reasons of computational convenience).

• To obtain new insights about the relationship
between the model and the data, keep as
open-minded as possible about parameter values.

• We seek to make model-based conclusions under
assumptions which are (i) minimal; (ii)
scientifically justified. Augmenting the model
with a fairly arbitrary prior distribution, for the
purpose of accessing the Bayesian inference
machinery, is inadvisable on both counts.

• Any model involving unobserved random
processes has computational similarities to
Bayesian inference, for which parameters are
unobserved random processes. Bayes’ identity,
P(A |B) = P(B |A)P(A)

/
P(B), is useful in both

cases.
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Full-information vs. Feature matching

• The likelihood function is f(y | θ) viewed as a
function of θ.

• Maximizing the likelihood, and Bayesian
inference based on the likelihood plus a prior, are
called full-information or statistically
efficient methods.

• Feature matching methods are based on some
function of the data other than the likelihood.
This includes generalized method of moments,
probe matching, and Bayesian method of
moments (ABC).

• Potential motives for feature matching are:
(i) computational convenience.
(ii) interpretability.
(iii) using only trustworthy aspects of the data.
(iv) diagnosing model misspecification.

14



Feature matching is seductive

• Offers an opportunity to use “Expert scientific
insights” to simplify the analysis.

• Apart from objections about objectivity,
low-dimensional summary statistics can be
surprisingly uninformative for complex systems
[8].

• Full-information likelihood inference has tools
to detect and correct model mispecification
issues which are more problematic for feature
matching [5].

• Feature matching can complement
full-information methods. For example, one can
identify the differing messages in the data at
various frequency components.

• If one really thinks that only certain
aspects of the model or data are to be
taken seriously, then one should restrict
attention to those features.
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Tools for likelihood-based inference

• The log likelihood is `(θ) = log f(y | θ).
• The maximum likelihood estimate (MLE)
is θ̂ = arg max `(θ).

• Writing θ = (θ1, . . . , θd), the observed Fisher

information matrix is I = −
[
(∂2/∂θi∂θj)`(θ̂)

]
.

• Remarkably, in many situations θ̂ is
approximately Normal(θ, I−1). This is
statistically efficient since it attains the
Cramér-Rao bound.

• Exact finite sample properties are, in principle,
available by simulation.

• Approximate confidence intervals can be
constructed using I−1. Finite sample properties
can be improved using profile likelihood
methods, which also avoid differentiating the
likelihood function.
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Profile likelihood

• Write θ = (φ, ν) where φ is a dφ-dimensional
component of θ.

• The profile log likelihood is
`p(φ) = maxν `(φ, ν).

• The chi-square approximation for likelihood
ratio tests gives a 95% confidence interval for φ,

{
φ : 2[`(θ̂)− `p(φ)] < C

}
,

where C is the 0.95 quantile of the chi-square
distribution on dφ degrees of freedom.

• The cut-off, C, is has asymptotic justification
but good finite sample properties. It could be
refined by a simulation experiment.

• The sliced log likelihood is `s(φ) = `(φ, ν̂)
where θ̂ = (φ̂, ν̂). Computing `s(φ) is easy, and it
has uses, but it must not be confused with `p(φ).
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Factorizing the likelihood

• Write y = (y1, . . . , yN ). The joint density can
be factored in terms of one-step prediction
densities, f(y | θ) =

∏N
n=1 f(yn | y1, . . . , yn−1, θ).

• Many other factorizations exist. Likelihood is
not synonymous with one-step prediction!

Interpreting units of log likelihood

• f(y | θ) has dimension (units of y)−1. Ratios, or
differences of logs, are dimensionless.

• [f(yn | y1, . . . , yn−1, θ)]−1 is the width of a
(uniform) one-step prediction window for yn.

• The log likelihood from simple statistical
models (linear regression, ARMA, iid Normal,
etc) gives a benchmark of predictability.

• A flag is raised if a mechanistic model has
much lower likelihood than benchmarks.

• “Much lower” means À 1 log unit. Chance
variation in likelihood ratios is ≈ 1 log unit.
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Likelihood-based model selection

• Likelihood ratio test (LRT). Let Θ0 ⊂ Θ1

be two nested subsets of parameter space, with
dimensions d0 < d1. If the true parameter is in
Θ0 then, under standard conditions,
2
[
maxΘ1 `(θ)−maxΘ0 `(θ)

] ≈ χ2
d1−d0

.

• Akaike’s information criterion (AIC).
Minimizing AIC = −2max `(θ) + 2d seeks to
minimize prediction error for the fitted model.

• AIC is not a formal statistical test, but is
applicable for non-nested models.

• Non-standard nesting is common [7]. For
example, let’s add a new compartment to a
dynamic model with individuals entering at rate
λ and leaving at rate µ. When λ = 0, note that
µ becomes undefined. The chi-square LRT is
typically conservative in such situations [1].
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Comparing transformations of the data

• Likelihoods can be compared between different
models for the same data, but not between
models for different data (or between models for
different subsets of the data).

• Care is required when comparing likelihoods
between a model for the original data and a
model for a transformation of the data.

• Likelihoods for transformed data can be ported
back to the original scale using the Jacobian.

Example: A log-SARMA benchmark

Standard software will give the log likelihood for
a SARMA model fitted to the log of the data.

Check that subtracting
∑N

n=1 log yn makes this
comparable to log likelihoods fitted to the data.
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Plug-and-play methodology

• An implicit model is for which we have an
algorithm to generate realizations, without
having a closed form model specification [3, 2].

• Statistical methods which can operate with
implicit models are plug-and-play [2, 4].

• Plug-and-play methods greatly reduce
the gap between model development and
inference. Simulation code for a new
model can be “plugged in” to existing
software.

• In the context of dynamic systems,
plug-and-play is defined via the dynamic process
model. Measurement error is required to follow a
convenient distribution.
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Partially observed Markov process

(POMP) models

• A Markov process is a time-indexed
stochastic process for which the past and future
are conditionally independent given the present.

• We allow discrete-time, continuous-time,
discrete-valued, continuous-valued,
vector-valued, function-valued, etc.

• If any variable that affects the future evolution
of a system is modeled in the current state, then
the Markov property holds tautologously.

• Delays cannot usually be modeled in a finite
dimensional Markov process. In specific cases
(e.g., gamma-distributed delays) this is possible.

• Partial observations are noisy functions of
the process observed at a discrete set of times.

• Each observation is conditionally independent
of past and future process values and other
observations, given the current process value.
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Motivations for the POMP framework

• POMP models have repeatedly been proposed
(or assumed without discussion) as a general
framework for modeling biological systems.

• A reasonable tradeoff between generality and
tractability.

• Computationally practical algorithms exist for
reconstructing unobserved variables from data
(filtering and smoothing) and for evaluating the
likelihood function.

• Difficulties arise for large state spaces
(spatio-temporal POMPs).

• Theoretical properties of Markov processes and
POMPs are well studied.
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Inference methods for POMPs

Frequentist or Bayesian

Full-information or Feature-based

Plug-and-play or not

Plug-and-play

Frequentist Bayesian

Full-information iterated filtering particle MCMC

Feature-based simulated moments ABC

Not plug-and-play

Frequentist Bayesian

Full-information EM algorithm MCMC

Feature-based Yule-Walker∗ ???

∗Yule-Walker is the method of moments for ARMA, a

linear Gaussian POMP.
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