Inferring biological dynamics 101

e An introduction (for those new to the topic).

e A discussion of what should be in an

introduction (for the experienced).

Syllabus

0. Pre-requisites.

1. Fundamental concepts.
(a) Biological modeling.
(b) Statistics.

(¢) Computation.
2. Research methods.
3. Case studies.

4. Individual projects.



0. Pre-requisites

These should be as minimal as possible, but no
more. Nobody wants to say “you have to go back

to basics before you can get started on this.”

e Statistics. An introductory course involving
hypothesis testing and random variables.

e Computing. Familiarity with R is assumed, but
not more advanced R topics such as S4 classes.
Basic familiarity with C is necessary for many
applications. Basic cluster computing
(embarrasingly parallel) is essential for larger

models, but prior experience is not assumed.

e Biological modeling. Some familiarity with

differential equation and Markov chain models.
e Experimental biology. None!

e Persistence. Combining complex biological
dynamic systems with complex nonlinear

stochastic models is seldom routine!



Biological modeling

Here, a model is a quantitative connection
between a scientific hypothesis (i.e., a question)
and data.

The circularity of scientific progress (questions —
experimentation — conclusions — questions)

suggests that
question driven modeling

should be followed by

model driven questioning.



e A qualitative model will mean a conceptual
framwork that gives useful abstract insight into a
system, without providing a quantitative
explanation for data. This is a common use of
“model” in other biological settings [6].

e A quantitative model is a candidate
data-generating process for the experiment. Such
a model is appropriate for parameter estimation,
forecasting, or evaluating potential interventions.

e These is a continuum: perhaps only some
aspects of the model and/or data are to be
subjected to quantitative analysis.

e A full-information analysis assesses the
compatibility between all aspects of the data and
the model.

e A feature-based approach compares only
selected aspects.

e This distinction has gray areas. For example,
data are usually processed in some way prior to

analysis, even in a full-information approach.



Inference: A birds eye view

e Abstractly, a statistical model is a probability
density function f(-|#) for a vector of potential
observations given an unknown parameter
vector, 6.

e We observe data, y.

e If we reason directly about which values of 6
would be likely to give observations similar to y

then we are doing frequentist inference.

e If we augment the model with a prior 7(6) and
compute the posterior 7(#|y) then we are doing

Bayesian inference.

e Later, we assume an unobserved dynamic
process which gives rise to y. The statistical
model is a distribution for potential observations,
whether or not latent processes are specified.

e An estimator is a map from potential
outcomes to parameter values. Evaluating this

map at the data gives a parameter estimate.



Models vs. Methods vs. Data

e Ideally, there is a conceptual separation
between choice of model and choice of inference
approach. This is not always clear in practice!

e Examples confounding an estimating method
with a model:

1. “GEE (generalized estimating equation)
model”

2. Comparing a (Bayesian) hierarchical linear

model to a (non-Bayesian) non-hierarchical

linear model.

e We must be careful not to confuse data

with the abstractions we use to analyze
them. William James (1842-1910).

Statistical modeling is a tool to aid
understanding the data, not a substitute for

understanding the data.



Information in the data

Minimum model com- Maximum model com-

plexity acceptable to ~ plexity estimable from

scientists the data

e We often want to work at the limits of what the
data can tell us.

e Some questions may have clear answers (in the
context of given model assumptions and data)
while others may not.

e Listablishing the well-posed questions is part of
the analysis.

e Strong model assumptions (i.e., few parameters
to estimate) may lead to statistically stronger,

but scientifically weaker, conclusions.

e It is possible, and sometimes advisable, to work
with models for which some combinations of

unknown parameters are not estimable from the
data.



Don’t shoot the messenger!

“The estimated parameter made no scientific
sense, so we fixed it at a plausible value.”

e If matching model to data gives uninterpretable
results, there may be some unappreciated aspect
of the model or data (unless there’s a bug!).

e Imposing a canonical biological interpretation
on model parameters is problematic: when we fit
parameters to data, we are letting the data
choose their own interpretation.

e Constraining parameters to stop the model
fitting the data, or even rejecting the parameter
estimation paradigm, are messenger-shooting
responses to avoid the hard work of aligning the
biological and statistical aspects of model fitting.



The case against fixing parameters

e If the estimated parameter agrees with your
preconceptions, there is no need to fix it.

e If an estimated parameter is noxious to you,
fixing it may result in other biases: remaining
parameters will twist and turn to find the region
of model space that you tried to fence off.

e Consider re-interpreting parameters to include
unmodeled phenomena. This is scientifically

unpleasant, but may be what the data ask for.

Example: measles in small & large towns [4].

e If extra-demographic stochasticity is not
modeled, estimated infectious periods go down

(to increase demographic noise).

e The data prefer to accomodate for unmodeled
spatial aspects by increasing the estimated
duration of infection, rather than via the

inhomogeneity exponent, c.



The case for fixing parameters

e Parameter values which are uncontroversial
and /or inconsequential can be fixed to simplify
the numerical analysis and model interpretation
(e.g., life expectancy of humans in an SIR
epidemic model).

e Fixing parameters is logically no different from
fixing other aspects of model structure (e.g., the
SIR structure for epidemic models).

e Fixing parameters can complement estimation.
The extent to which the data agree quantitively
with a particular biological story is part of the

point of the modeling exercise!
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The case against prior distributions

e A fairly restrictive prior has the same
disadvantages as fixing parameters, but adds
neither the logical clarity nor simplicity of fixing.

e Broad priors can lead to multiple posterior
modes, or nonlinear ridges. Numerical issues

then force practitioners toward fixing.

e (Quantitative prior information on relationships
between parameters is usually unavailable, even

when marginal prior information exists.

e Asserting prior independence of parameters
should not be considered a scientific justification.

e There is no such thing as an objectively flat
prior: a “flat” prior is skewed on a log scale.

e Conclusions can be surprisingly sensitive to the
prior: in the limit as the prior flattens, the Bayes
factor selects a Normal(0, 1) model over a
Normal(6, 1) whatever the data y. In this case, a

flat prior is fine for computing the posterior.
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The case for prior distributions

e If you have quantitative prior information, you

should use it.

o “If we knew the prior, we’d all be Bayesians!”
(if you philosophically dispute the existence of a
prior, you could still agree with this statement.)

e Computational advances have made Bayesian
inference a flexible framework applicable to

many situations.
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A subjective view

e Parameter fixing is done too often (maybe for
reasons of computational convenience).

e Bayesian inference is done too often (maybe for
reasons of computational convenience).

e To obtain new insights about the relationship
between the model and the data, keep as
open-minded as possible about parameter values.

e We seek to make model-based conclusions under
assumptions which are (i) minimal; (ii)
scientifically justified. Augmenting the model
with a fairly arbitrary prior distribution, for the
purpose of accessing the Bayesian inference
machinery, is inadvisable on both counts.

e Any model involving unobserved random
processes has computational similarities to
Bayesian inference, for which parameters are
unobserved random processes Bayes’ identity,
P(A|B) =P(B|A)P(A)/P(B), is useful in both

cases.
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Full-information vs. Feature matching

e The likelihood function is f(y | ) viewed as a

function of 6.

e Maximizing the likelihood, and Bayesian
inference based on the likelihood plus a prior, are
called full-information or statistically

efficient methods.

e Feature matching methods are based on some
function of the data other than the likelihood.
This includes generalized method of moments,

probe matching, and Bayesian method of
moments (ABC).

e Potential motives for feature matching are:
(i) computational convenience.

(ii) interpretability.

(iii) using only trustworthy aspects of the data.

(

iv) diagnosing model misspecification.

14



Feature matching is seductive

e Offers an opportunity to use “Expert scientific
insights” to simplify the analysis.

e Apart from objections about objectivity,
low-dimensional summary statistics can be

surprisingly uninformative for complex systems

3].

e Full-information likelihood inference has tools
to detect and correct model mispecification
issues which are more problematic for feature

matching [5].

e Feature matching can complement
full-information methods. For example, one can
identify the differing messages in the data at

various frequency components.

e If one really thinks that only certain
aspects of the model or data are to be
taken seriously, then one should restrict

attention to those features.
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Tools for likelihood-based inference

e The log likelihood is /(0) = log f(y | 0).

e The maximum likelihood estimate (MLE)
is O = arg max £(0).

e Writing 0 = (64,...,04), the observed Fisher
information matrix is I = — [(02/6’92-8@)6(@) .

e Remarkably, in many situations f is
approximately Normal(f, I~!). This is
statistically efficient since it attains the

Cramér-Rao bound.

e Exact finite sample properties are, in principle,
available by simulation.

e Approximate confidence intervals can be
constructed using /~'. Finite sample properties
can be improved using profile likelihood
methods, which also avoid differentiating the

likelihood function.
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Profile likelihood

e Write 0 = (¢, v) where ¢ is a dg-dimensional
component of 6.

e The profile log likelihood is
£,(6) = max, £(6,v)

e The chi-square approximation for likelihood

ratio tests gives a 95% confidence interval for ¢,

{6:2[0(0) — £,(¢)] < C},

where C' is the 0.95 quantile of the chi-square
distribution on d, degrees of freedom.

e The cut-off, (', is has asymptotic justification
but good finite sample properties. It could be

refined by a simulation experiment.

e The sliced log likelihood is /,(¢) = (¢, D)

where 0 = (¢, ?). Computing £, (¢) is easy, and it

has uses, but it must not be confused with ¢,(¢).
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Factorizing the likelihood

e Write y = (y1,...,yn). The joint density can
be factored in terms of one-step prediction

denSitieS7 f(y ‘ 9) — quzvzl f(y’n | Y1y -y Yn—1, 9)

e Many other factorizations exist. Likelihood is
not synonymous with one-step prediction!

Interpreting units of log likelihood

e f(y|0) has dimension (units of y)~!. Ratios, or
differences of logs, are dimensionless.

o [f(ynlyr, - yn_1,0)]" 1 is the width of a
(uniform) one-step prediction window for y,,.

e The log likelihood from simple statistical
models (linear regression, ARMA, iid Normal,
etc) gives a benchmark of predictability.

e A flag is raised if a mechanistic model has
much lower likelihood than benchmarks.

e “Much lower” means > 1 log unit. Chance
variation in likelihood ratios is ~ 1 log unit.
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Likelihood-based model selection

e Likelihood ratio test (LRT). Let Oy C 6,
be two nested subsets of parameter space, with
dimensions dy < dy. If the true parameter is in
©p then, under standard conditions,
2| maxe, £(0) —maxe, £(0)| = X3 _g4 -

e Akaike’s information criterion (AIC).
Minimizing AIC' = —2max £(6) + 2d seeks to

minimize prediction error for the fitted model.

e AIC is not a formal statistical test, but is

applicable for non-nested models.

e Non-standard nesting is common [7]. For
example, let’s add a new compartment to a
dynamic model with individuals entering at rate
A and leaving at rate u. When A = 0, note that
1t becomes undefined. The chi-square LRT is
typically conservative in such situations [1].

19



Comparing transformations of the data

e Likelihoods can be compared between different
models for the same data, but not between
models for different data (or between models for
different subsets of the data).

e Care is required when comparing likelihoods
between a model for the original data and a

model for a transformation of the data.

e Likelihoods for transformed data can be ported

back to the original scale using the Jacobian.

Example: A log-SARMA benchmark

Standard software will give the log likelihood for
a SARMA model fitted to the log of the data.

Check that subtracting ij:l log y,, makes this
comparable to log likelihoods fitted to the data.
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Plug-and-play methodology

e An implicit model is for which we have an
algorithm to generate realizations, without

having a closed form model specification |3, 2].

e Statistical methods which can operate with

implicit models are plug-and-play [2, 4].

e Plug-and-play methods greatly reduce
the gap between model development and
inference. Simulation code for a new
model can be “plugged in” to existing

software.

e In the context of dynamic systems,
plug-and-play is defined via the dynamic process
model. Measurement error is required to follow a

convenient distribution.
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Partially observed Markov process
(POMP) models

e A Markov process is a time-indexed
stochastic process for which the past and future
are conditionally independent given the present.

e We allow discrete-time, continuous-time,
discrete-valued, continuous-valued,
vector-valued, function-valued, etc.

e If any variable that affects the future evolution
of a system is modeled in the current state, then
the Markov property holds tautologously.

e Delays cannot usually be modeled in a finite
dimensional Markov process. In specific cases
(e.g., gamma-distributed delays) this is possible.

e Partial observations are noisy functions of
the process observed at a discrete set of times.

e Each observation is conditionally independent
of past and future process values and other
observations, given the current process value.
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Motivations for the POMP framework

e POMP models have repeatedly been proposed
(or assumed without discussion) as a general

framework for modeling biological systems.

e A reasonable tradeoff between generality and

tractability.

e Computationally practical algorithms exist for
reconstructing unobserved variables from data
(filtering and smoothing) and for evaluating the
likelihood function.

e Difficulties arise for large state spaces
(spatio-temporal POMPs).

e Theoretical properties of Markov processes and
POMPs are well studied.
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Inference methods for POMPs

Frequentist or Bayesian
Full-information or Feature-based

Plug-and-play or not

Plug-and-play

Frequentist Bayesian

Full-information iterated filtering particle MCMC

Feature-based simulated moments ABC

Not plug-and-play

Frequentist Bayesian
Full-information | EM algorithm  MCMC
Feature-based Yule-Walker™ 777

*Yule-Walker is the method of moments for ARMA, a
linear Gaussian POMP.
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