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Overview

1 Phylodynamic modeling and inference.

2 An application to HIV transmission.

3 Relationships to spatio-temporal modeling and inference.



Phylogenetics, phylodynamics and epidemiology

Phylogenetics is the use of genetic sequence data to infer
evolutionary relationships represented by a phylogenetic tree.

Phylodynamics uses phylogenetic methods to investigate population
dynamics (rates of birth, death, migration, etc).

Infectious disease epidemiology can be informed by phylodynamic
study of a pathogen. Migration is disease transmission.



Relationship to spatio-temporal dynamics

Phylogeography is the use of phylogenetic methods to investigate
geographical dispersion of populations; closely related to
phylodynamics.

Large dynamic systems. In full generality, the space-time inference
problem is equivalent to the complex system inference problem. For
example, both can be framed as partially observed Markov process
inference problems on a large space.

Weak coupling. Tractability of space-time inference problems
typically involves spatial interactions that become weak over large
distances. Different branches of an evolving phylogeny also have weak
interactions, typically only through competition for common resources.



Why phylodynamics?

Fundamental infectious disease epidemiology concepts, like herd
immunity and the dependence of prevalence on the reproductive ratio,
R0, exist only in the context of nonlinear dynamic models.

More sophisticated questions, such as contact rates between age
groups and the effectiveness of vaccines, cannot properly be answered
outside the context of these dynamic models.

The growing abundance of routinely collected genetic sequence data
on pathogens should be able to inform many unresolved questions in
epidemiology.

Disclaimer: we find that the genetic data complements, but does not
replace, the importance of traditional surveillance data.



HIV transmission in early infection

Early-stage HIV infection is characterized by high virus levels and
possibly a continuation of high-risk behaviors associated with
transmission.

We studied the HIV epidemic in SE Michigan to quantify the fraction
of transmissions from early HIV infection:

Erik M. Volz, Edward Ionides, Ethan O. Romero-Severson,
Mary-Grace Brandt, Eve Mokotoff, James S. Koopman.
“HIV-1 Transmission during Early Infection in Men Who
Have Sex with Men: A Phylodynamic Analysis.” (PLoS
Medicine, 2013).

Data provided by the Michigan Dept of Community Health: 9,000
anonymized HIV sequences linked to clinical, demographic and
behavioral covariates. Surveillance data for 30,000 diagnoses.
Additional data on some individuals enrolled in observational studies.



An HIV compartment model flow diagram

Source

Sink

Ik is infected &
undiagnosed.

Jk is diagnosed.

k is stage of
disease
progression.

k = 4 is AIDS.

k = 0 is early HIV
infection.



Interpretation of the flow diagram

The rates were used to define a system of ordinary differential
equations.

The infection rate, λ(t), and the diagnosis rate, µ(t), were modeled
nonparametrically via cubic splines.

A Poisson measurement model links the modeled number of
diagnoses of HIV and AIDS to the surveillance data.

How do we build a measurement model for the genetic sequence data?



Likelihood for the coalescent in a
dynamic, structured population

Suppose the phylogeny for the sequence data is known (we estimated
this via BEAST).

“Coalescent times” are branch times in the phylogeny.

Branches are assumed to correspond to transmission events between
lineages ancestral to the observed sequences.

A high transmission rate increases the coalescent rate.

A small population increases the coalescent rate, since ancestral
lineages are likely to coincide at population bottlenecks.

Erik Volz (Genetics, 2009 & 2012) worked out the equations.



Differential system for the coalescent rate

cij =
∑
k=1

m∑
`=1

fk`

YkY`
(pikpj` + pi`pjk)

d

dt
pik =

m∑
`=1

(
pi`

Y`
gk` −

pik

Yk
g`k +

pi`

Y`

Yk − Ak

Yk
fk` −

pik

Yk

Y` − A`

Y`
f`k

)

States (i.e., compartments) are numbered 1, . . . ,m.

cij(s) is the coalescent rate between lineages i and j at time s,
measuring time backwards from the leaf.

fk` is the rate at which individuals in k have offspring in state `.

gk` is the rate at which individuals in k migrate to state `.





Inference

The likelihood function was maximized using an iterative
Nelder-Mead search, with 6000 simultaneous optimizations initially
started in a large hyper-rectangle and re-started every 200 iterations
in the vicinity of the 600 highest likelihood searches.

Global maximization was validated by Monte Carlo replication.

Profile likelihoods were computed to provide confidence intervals.

Empirical Bayes methods were used, with a prior constructed from
these confidence intervals, to investigate uncertainty in state
estimates.

The computation took around a week on a 200 core cluster.

Around 45% ±2% of HIV transmissions were estimated to originate
from early infections in 2007.





Conclusions

Potential improvements on this methodology include:
1 simultaneous estimation of the phylogeny and the dynamics.
2 inclusion of stochasticity in the dynamics.

Sequential Monte Carlo (SMC) approaches to this are being
investigated (in collaboration with Alex Smith, Aaron King and James
Koopman).

Scaling up SMC methods for large numbers of sequences will require
methods that take advantage of weak coupling. SMC methods for
spatio-temporal systems and large complex systems are in their
infancy (currently being investigated in collaboration with Joon Ha
Park).



Thank You!

The End.


