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Inference challenges in population dynamics

1 Combining measurement noise and process noise.

2 Including covariates in mechanistically plausible ways.

3 Continuous time models.

4 Modeling and estimating interactions in coupled systems.

5 Dealing with unobserved variables.

6 Modeling spatial-temporal dynamics.

7 Studying population dynamics via genetic sequence data.

1–6 are from Bjornstad & Grenfell (Science, 2001).
7 is from Grenfell et al (Science, 2004).
1–5 are largely solved, from a methodological perspective.
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Example: Pre-vaccination measles in England & Wales
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Time series data, panel data & spatiotemporal data

Looking at one unit (town) is time series analysis.

Joint modeling of a few units (say, 2 or 3) is multivariate time
series analysis.

Analysis of many time series, without consideration of dynamic
interactions, is panel data analysis.

Allowing for coupling between units, we get spatiotemporal
analysis, which in our context is metapopulation analysis.

Question: When should we avoid inference for spatiotemporal models?
When do we need to consider coupling? How?
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Desiderata

We want to be able to fit arbitrary dynamic models. The limitations
should be our scientific creativity and the information in the data.

In practice, that means using plug-and-play methods which need a
simulator from the model but not nice closed-form expressions for
densities.

We want statistically efficient inference, to extract all the information
in the data.

In practice, that means using likelihood-based methods.

In the time series case, iterated particle filtering (IF2) implemented in
the R package pomp enables Masters-level statisticians to do this
(https://ionides.github.io/531w22/). The science may be
hard, but the statistics is becoming routine.

5

https://ionides.github.io/531w22/


Panel data

To investigate epidemiological dynamics in multiple cities, one can
consider each city independently, perhaps modeling a background
immigration rate of infections for each city.

Decoupling leads to panel data analysis, by assumption. Iterated
filtering methods extend to panel data (Breto et al, Journal of the
American Statistical Association, 2019).

We must decide which parameters should be modeled as shared vs
unit-specific.

The consequences of decoupling are becoming easier to study with
the development of statistical inference methods for coupled systems,
i.e., metapopulation dynamics.
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The curse of dimensionality

Particle filter (PF) methods are effective for inference on
low-dimensional nonlinear partially observed stochastic dynamic
systems. They scale exponentially badly.

Extending the successes of particle filter methods from time series
data to metapopulation data is becoming possible.

Algorithms under consideration:
Bagged filters (BF, IBF)
Ensemble Kalman filter (EnKF, IEnKF)
Guided intermiediate resampling filter (GIRF, IGIRF)
Block particle filter (BPF, IBPF)

Filters estimate latent states and evaluate the likelihood.

Each filter has an iterated version which estimates parameters by
repeated filtering using stochastic parameter perturbations.

These algorithms are all implemented in an R package, spatPomp.

7



Filtering U units of a coupled measles SEIR model
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Simulated data using a gravity model with geography, demography and
transmssion parameters corresponding to UK pre-vaccination measles
(Ionides et al, JASA, 2021).
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U = 40 units for a coupled measles SEIR model
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A. Simulated Susceptible-Exposed-Infected-Recovered dynamics coupled
with a gravity model (log of biweekly reported cases).
B. Measles UK pre-vaccination case reports for the 40 largest cities.
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Parameters for the measles model

Seasonal tranmission: mean and amplitude, using school term for
contact rate.

Durations of latency and infectious period.

Initial values: fraction susceptible, latent and infectious.

Cohort effect: all births in an age cohort start school in September.

Inhomogenous mixing coefficient.

Measurement fraction.

Transport model gravity constant.

Dynamic noise (process overdispersion).

Measurement overdispersion.
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More on the block particle filter

BPF worked quickly, easily and reliably on our measles model filtering
experiments.

This motivated us to develop an IBPF for parameter estimation.

BPF has theoretical support in some situations (Rebeschini & Van
Handel, Annals of Applied Probability, 2015).

BPF was independently proposed as the “factored particle filter” by
Ng et al (2002, Proc. 18th Conference on Uncertainty and Artificial
Intelligence) but not widely popularized.
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Particle filter (PF)

Evolutionary analogy

Mutation
↓

Fitness
↓

Natural selection

Particle filter algorithm

Predict: stochastic dynamics
↓

Measurement: weight
↓

Filter: resample

• PF is an evolutionary algorithm with good mathematical properties: an
unbiased likelihood estimate and consistent latent state distribution.
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Block particle filter (BPF)

Evolutionary analogy

Mutation
↓

Fitness
for each chromosome

↓
Natural selection

for each chromosome
↓

Recombine chromosomes

Block particle filter

Predict: stochastic dynamics
↓

Measurement: weight
for each block

↓
Filter: resample
for each block

↓
Recombine blocks

• Blocks in BPF allow recombination (reassortment of chromosomes in
sexual reproduction) in the evolutionary analogy.

• Blocks are a partition of the metapopulation units. Our experiments
suggest treating each sub-population (i.e., city) as a block.
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Measles likelihood slices for coupling parameter, G
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Simulating 15 year of data from
U = 40 cities for the measles model.
Slice likelihood, varying G with other
paramters fixed at the truth.

A. Evaluation using adapted bagged
filter (ABF).

B. Evaluation using block particle
filter (BPF).

C. Evaluation using EnKF.

Results from Ionides et al (2021,
JASA). We computed a slice due to
lack of good optimization algorithms
to compute a profile.
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An iterated block particle filter for parameter estimation
The IBPF algorithm

Initialize: model&parameters

Perturb: parameters

Predict: stochastic dynamics

Reweight ReweightReweight

Resample
state

Resample
state

Resample
state

Resample
param.

Resample
param.

Resample
param.

n = 1:N

Recombine

m = 1:M

Blockwise

1
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Scalability needed for practical inference

Large numbers of parameters

Initial conditions will typically have to be estimated for each unit.

Various dynamic parameters and measurement parameters (e.g.,
reporting rate) may also need to be unit-specific to obtain a statistical
fit to the data.

Working with hundreds of estimated parameters raises additional
challenges on top of the high-dimensional coupled dynamics.

A moderate numbers of spatial units is enough to open new possibilities.

As soon as dimension exceeds capabilities of a particle filter (say,
U = 5) we are in situations where likelihood-based inference for
general models has been inaccessible.

10-100 coupled units is our target problem size.

Larger problems will need numerical approximations (e.g., EnKF).
Exact Monte Carlo methods help study the effect of these
approximations.
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Auto-regression of spatial perturbations for shared
parameters
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Random perturbations must be smaller to match larger
number (20× 13) of parameters
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Likelihood on benchmark problems with 20 towns

Simulation UK measles p

Benchmark -35041 -40345
4/13 parameters unit-specific -35052 -43069 4× 20 + 9
12 parameters unit-specific -35115 -40641 12× 20 + 1

Simulated data: benchmark is likelihood at truth. Optimization used
10hr on one node.

Actual data: benchmark is likelihood from uncoupled model with all
parameters unit-specific, and a parameter for immigration rate of new
cases. Optimization used 2× 10hr on one node.
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Filtering U -dimensional correlated Brownian motion
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Cov
(
Xu,n −Xu,n−1, Xũ,n −Xũ,n−1

)
∼ 0.4|u−ũ|
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Filtering U units of Lorenz 96 toy atmospheric model

−3.5

−3.0

−2.5

−2.0

10 20 30 40 50
U

lo
g 

lik
el

ih
oo

d 
pe

r 
ob

se
rv

at
io

n

Method

ABF
ABF−IR
BPF
EnKF
GIRF
PF
UBF

dXu(t) =
{
Xu−1(t)

(
Xu+1(t)−Xu−2(t)

)
−Xu(t) + F

}
dt+ σ dBu(t)
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Future work

• We are getting close to the point where we can carry out likelihood-based
inference for a flexible class of metapopulation models for measles.
Flexibility supports generation and testing of scientific hypotheses.

• Many systems in ecology, epidemiology and elsewhere could be studied
in a SpatPOMP framework. Including microbiomes?

• Modeling and inference for nonlinear stochastic dynamics is hard. But, if
you can’t build a quantitative statistical model then you don’t understand
it and you can’t control it?
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