Inference for metapopulation dynamics

Edward Ionides University of Michigan, Department of Statistics

Multiscale Microbial Communities Dynamical Models, Ecology, and One Health February 22, 2022

Slides are at https://ionides.github.io/talks/imsi22.pdf

Joint work with Kidus Asfaw, Ning Ning, Joonha Park and Aaron King

- Combining measurement noise and process noise.
- Including covariates in mechanistically plausible ways.
- Ontinuous time models.
- Modeling and estimating interactions in coupled systems.
- Obealing with unobserved variables.
- Modeling spatial-temporal dynamics.
- **③** Studying population dynamics via genetic sequence data.

1-6 are from Bjornstad & Grenfell (*Science*, 2001).
7 is from Grenfell et al (*Science*, 2004).
1-5 are largely solved, from a methodological perspective.

Example: Pre-vaccination measles in England & Wales

- Looking at one unit (town) is time series analysis.
- Joint modeling of a few units (say, 2 or 3) is **multivariate time** series analysis.
- Analysis of many time series, without consideration of dynamic interactions, is **panel data analysis**.
- Allowing for coupling between units, we get **spatiotemporal analysis**, which in our context is **metapopulation analysis**.

Question: When should we avoid inference for spatiotemporal models? When do we need to consider coupling? How?

- We want to be able to fit arbitrary dynamic models. The limitations should be our scientific creativity and the information in the data.
- In practice, that means using **plug-and-play** methods which need a simulator from the model but not nice closed-form expressions for densities.
- We want statistically efficient inference, to extract all the information in the data.
- In practice, that means using likelihood-based methods.
- In the time series case, iterated particle filtering (IF2) implemented in the R package pomp enables Masters-level statisticians to do this (https://ionides.github.io/531w22/). The science may be hard, but the statistics is becoming routine.

- To investigate epidemiological dynamics in multiple cities, one can consider each city independently, perhaps modeling a background immigration rate of infections for each city.
- **Decoupling** leads to panel data analysis, by assumption. Iterated filtering methods extend to panel data (Breto et al, *Journal of the American Statistical Association*, 2019).
- We must decide which parameters should be modeled as **shared** vs **unit-specific**.
- The consequences of decoupling are becoming easier to study with the development of statistical inference methods for coupled systems, i.e., metapopulation dynamics.

- Particle filter (PF) methods are effective for inference on low-dimensional nonlinear partially observed stochastic dynamic systems. They scale exponentially badly.
- Extending the successes of particle filter methods from time series data to metapopulation data is becoming possible.
- Algorithms under consideration: Bagged filters (BF, IBF) Ensemble Kalman filter (EnKF, IEnKF) Guided intermiediate resampling filter (GIRF, IGIRF) Block particle filter (BPF, IBPF)
- Filters estimate latent states and evaluate the likelihood.
- Each filter has an iterated version which estimates parameters by repeated filtering using stochastic parameter perturbations.
- These algorithms are all implemented in an R package, spatPomp.

Filtering U units of a coupled measles SEIR model

Simulated data using a gravity model with geography, demography and transmission parameters corresponding to UK pre-vaccination measles (lonides et al, JASA, 2021).

U = 40 units for a coupled measles SEIR model

A. Simulated Susceptible-Exposed-Infected-Recovered dynamics coupled with a gravity model (log of biweekly reported cases).

B. Measles UK pre-vaccination case reports for the 40 largest cities.

- Seasonal tranmission: mean and amplitude, using school term for contact rate.
- Durations of latency and infectious period.
- Initial values: fraction susceptible, latent and infectious.
- Cohort effect: all births in an age cohort start school in September.
- Inhomogenous mixing coefficient.
- Measurement fraction.
- Transport model gravity constant.
- Dynamic noise (process overdispersion).
- Measurement overdispersion.

- BPF worked quickly, easily and reliably on our measles model filtering experiments.
- This motivated us to develop an IBPF for parameter estimation.
- BPF has theoretical support in some situations (Rebeschini & Van Handel, *Annals of Applied Probability*, 2015).
- BPF was independently proposed as the "factored particle filter" by Ng et al (2002, *Proc. 18th Conference on Uncertainty and Artificial Intelligence*) but not widely popularized.

• PF is an evolutionary algorithm with good mathematical properties: an unbiased likelihood estimate and consistent latent state distribution.

Evolutionary analogy

Mutation ↓ Fitness for each chromosome ↓ Natural selection for each chromosome ↓ Recombine chromosomes

Block particle filter

Predict: stochastic dynamics ↓ Measurement: weight for each block ↓ Filter: resample for each block ↓ Recombine blocks

- Blocks in BPF allow recombination (reassortment of chromosomes in sexual reproduction) in the evolutionary analogy.
- Blocks are a partition of the metapopulation units. Our experiments suggest treating each sub-population (i.e., city) as a block.

Measles likelihood slices for coupling parameter, G

Simulating 15 year of data from U = 40 cities for the measles model. Slice likelihood, varying G with other paramters fixed at the truth.

A. Evaluation using adapted bagged filter (ABF).

B. Evaluation using block particle filter (BPF).

C. Evaluation using EnKF.

Results from lonides et al (2021, *JASA*). We computed a slice due to lack of good optimization algorithms to compute a profile.

An iterated block particle filter for parameter estimation

Scalability needed for practical inference

Large numbers of parameters

- Initial conditions will typically have to be estimated for each unit.
- Various dynamic parameters and measurement parameters (e.g., reporting rate) may also need to be unit-specific to obtain a statistical fit to the data.
- Working with hundreds of estimated parameters raises additional challenges on top of the high-dimensional coupled dynamics.

A moderate numbers of spatial units is enough to open new possibilities.

- As soon as dimension exceeds capabilities of a particle filter (say, U = 5) we are in situations where likelihood-based inference for general models has been inaccessible.
- 10-100 coupled units is our target problem size.
- Larger problems will need numerical approximations (e.g., EnKF). Exact Monte Carlo methods help study the effect of these approximations.

Auto-regression of spatial perturbations for shared parameters

spatial autoregression parameter

Random perturbations must be smaller to match larger number (20×13) of parameters

	Simulation	UK measles	p
Benchmark	-35041	-40345	
4/13 parameters unit-specific	-35052	-43069	$4 \times 20 + 9$
12 parameters unit-specific	-35115	-40641	$12 \times 20 + 1$

- Simulated data: benchmark is likelihood at truth. Optimization used 10hr on one node.
- Actual data: benchmark is likelihood from uncoupled model with all parameters unit-specific, and a parameter for immigration rate of new cases. Optimization used 2×10 hr on one node.

Filtering U-dimensional correlated Brownian motion

Filtering U units of Lorenz 96 toy atmospheric model

 $dX_u(t) = \left\{ X_{u-1}(t) \left(X_{u+1}(t) - X_{u-2}(t) \right) - X_u(t) + F \right\} dt + \sigma \, dB_u(t)$

- We are getting close to the point where we can carry out likelihood-based inference for a flexible class of metapopulation models for measles. Flexibility supports generation and testing of scientific hypotheses.
- Many systems in ecology, epidemiology and elsewhere could be studied in a SpatPOMP framework. Including microbiomes?
- Modeling and inference for nonlinear stochastic dynamics is hard. But, if you can't build a quantitative statistical model then you don't understand it and you can't control it?

- Bjørnstad, O. N. and Grenfell, B. T. (2001). Noisy clockwork: Time series analysis of population fluctuations in animals. *Science*, 293:638–643.
- Bretó, C., Ionides, E. L., and King, A. A. (2019). Panel data analysis via mechanistic models. *Journal of the American Statistical Association*, 115:1178–1188.
- Grenfell, B. T., Pybus, O. G., Gog, J. R., Wood, J. L. N., Daly, J. M., Mumford, J. A., and Holmes, E. C. (2004). Unifying the epidemiological and evolutionary dynamics of pathogens. *Science*, 303:327–332.
- Ionides, E. L., Asfaw, K., Park, J., and King, A. A. (2021). Bagged filters for partially observed interacting systems. *Journal of the American Statistical Association*, 0(ja):1–33.
- Ng, B., Peshkin, L., and Pfeffer, A. (2002). Factored particles for scalable monitoring. *Proceedings of the 18th Conference on Uncertainty and Artificial Intelligence*, pages 370–377.

Rebeschini, P. and van Handel, R. (2015). Can local particle filters beat the curse of dimensionality? *The Annals of Applied Probability*, 25:2809–2866.