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Outline

1. Overview of time series analysis for ecological systems.

2. Some practical considerations: relationship between statistical

methodology and software.

3. The plug-and-play property.

4. Iterated filtering: theory and methodology.

5. Case studies: malaria & measles.

6. Outstanding challenges.
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Why study inference for dynamic models in ecology?

• Long time series of fluctuating abundances provide an opportunity to

test ecological theories of the relationships driving the system.

e.g., To what extent is a herbivore population constrained by

predators, food resources, or disease?

• Forecasting and parameter estimation are of some interest. But a

primary concern is to identify the roles of population dynamics (i.e.,

reproduction & foodchains), evolutionary processes, and environmental

covariates. BASIC SCIENCE.

• Humans are increasingly responsible for managing ecosystems. This

requires quantitative understanding of ecological relationships and the

potential effect of interventions. ENGINEERING.
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Infectious diseases as ecological systems

• Good spatio-temporal data are available for many human diseases.

• The 20th century saw some successes for vaccination and drug

treatment. But the limitations also became evident.

¦ Emerging infectious diseases (SARS; HIV/AIDS; H5N1 influenza

“bird flu”)

¦ New strains and drug resistance (H1N1 “swine flu”; MRSA “the

hospital super-bug”; tuberculosis; malaria)

• Controlling human/livestock/wildlife diseases involves understanding the

pathogen-host ecological dynamics.



Ed Ionides Inferring the dynamic mechanisms that drive ecological systems 6

Methodological problem: Inference for partially observed

nonlinear stochastic dynamic systems

• A research area for 60yrs (initially inspired by rocket control theory).

• Difficulties are computational: Bayesian, likelihood and pattern-matching

methods are all tricky to implement. Customized approximations and

model-specific methods have been needed.

• Linearization & small noise asymptotics are questionable (or worse) for

many biological systems.

• No general-purpose software has been available.

¦ WinBUGS performs poorly on these models.

¦ pomp, an R package for partially observed Markov processes

(POMPs), is being developed.
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Partially Observed Markov Process (POMP) models

The unobserved Markov state process is denoted X(t). For observation

times t1, . . . , tN we write Xn = X(tn). The observable variables

Y1, . . . , YN are conditionally independent given X1, . . . , XN . The

model depends on an unknown parameter vector θ.

• To think algorithmically, we define some function calls:

rprocess( ): a draw from fXn|Xn−1
(xn |xn−1 ; θ)

dprocess( ): evaluation of fXn|Xn−1
(xn |xn−1 ; θ)

rmeasure( ): a draw from fYn|Xn
(yn |xn ; θ)

dmeasure( ): evaluation of fYn|Xn
(yn |xn ; θ)
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Plug-and-play inference for POMP models

• An algorithm operating on a POMP is plug-and-play if it involves calls to

rprocess but not to dprocess. In this case, numerical solution of

sample paths is a ‘black box’ which is plugged into the software.

• Bayesian plug-and-play:

1. Artificial parameter evolution (Liu and West, 2001)

2. Approximate Bayesian computation (Sisson et al, PNAS, 2007)

3. Particle MCMC (Andrieu et al, JRSSB, 2010)

• Non-Bayesian plug-and-play:

4. Simulation-based prediction rules (Kendall et al, Ecology, 1999)

5. Iterated filtering (Ionides et al, PNAS, 2006)

Plug-and-play is a VERY USEFUL PROPERTY for investigating

scientific models.
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Classification of methodologies by required operations

rprocess dprocess rmeasure dmeasure

Iterated filtering 4 7 7 4

Liu-West SMC 4 7 7 4

EM via SMC 4 4 7 4

MCMC 7 4 7 4

Nonlinear forecasting 4 7 4 7

Particle MCMC 4 7 7 4

Probe matching 4 7 4 7

• The usual workhorses of statistical computation (EM and MCMC) are

not plug-and-play.

• Nonlinear forecasting and probe matching are simulation-based

techniques developed by scientists, likely due to the inapplicability of

textbook statistical techniques
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Plug-and-play in other settings

• Optimization. Methods requiring only evaluation of the objective

function to be optimized are sometimes called gradient-free. This is the

same concept as plug-and-play: the code to evaluate the objective

function can be plugged into the optimizer.

• Complex systems. Methods to study the behavior of large simulation

models that only employ the underlying code as a “black box” to generate

simulations have been called equation-free (Kevrekidis et al., 2003,

2004).

• This is the same concept as plug-and-play, but we prefer our label!

• A typical goal is to determine the relationship between macroscopic

phenomena (e.g. phase transitions) and microscopic properties (e.g.

molecular interactions).



Ed Ionides Inferring the dynamic mechanisms that drive ecological systems 11

The cost of plug-and-play

• Approximate Bayesian methods and simulated moment methods lead to

a loss of statistical efficiency.

• In contrast, iterated filtering enables (almost) exact likelihood-based

inference.

• Improvements in numerical efficiency may be possible when analytic

properties are available (at the expense of plug-and-play). But many

interesting dynamic models are analytically intractable—for example, it is

standard to investigate systems of ordinary differential equations

numerically.
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Summary of plug-and-play inference via iterated filtering

• Filtering is the extensively-studied problem of calculating the conditional

distribution of the unobserved state vector xt given the observations up

to that time, y1, y2, . . . , yt.

• Iterated filtering is a recently developed algorithm which uses a

sequence of solutions to the filtering problem to maximize the likelihood

function over unknown model parameters.

(Ionides, Bretó & King. PNAS, 2006)

• If the filter is plug-and-play (e.g. using standard sequential Monte Carlo

methods) this is inherited by iterated filtering.
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Key idea of iterated filtering

• The conditional distribution of time-varying parameters is a (relatively)

tractable filtering problem. Set θ = θt to be a random walk with

E[θt|θt−1] = θt−1 Var(θt|θt−1) = σ2

• The limit σ → 0 can be used to maximize the likelihood for fixed

parameters.
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Theorem. (Ionides, Bretó & King, PNAS, 2006)

Suppose θ̂0, C and y1:T are fixed and define

θ̂t = θ̂t(σ) = E[θt|y1:t]

Vt = Vt(σ) = Var(θt|y1:t−1)

Assuming sufficient regularity conditions for a Taylor series expansion,

limσ→0
∑T

t=1 V −1
t (θ̂t − θ̂t−1) = (∂/∂θ) log f(y1:T |θ, σ=0)

∣∣∣
θ=θ̂0

The limit of an appropriately weighted average of local filtered

parameter estimates is the derivative of the log likelihood.
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Example: malaria (mosquito-transmitted Plasmodium infection)
Malaria_Life_Cycle.gif (GIF Image, 543x435 pixels) http://medpediamedia.com/u/Malaria_Life_Cycle.g...

1 of 1 07/19/2010 12:06 PM

Despite extensive study of the disease system (mosquito, Plasmodium &

human immunology) ecological dynamics of malaria remain hotly debated.
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Malaria: A global challenge

• Bill Gates would like to eradicate it, but others have tried before...

• There has been extensive debate on whether/how global climate change

will affect malaria burden—a model validated by data is required.

From the perspective of statistical methodology

• Despite the huge literature, no dynamic model of malaria transmission

has previously been fitted directly to time series data.

• Difficulties include: Incomplete and complex immunity; dynamics in both

mosquito and human stages; diagnostic difficulties (the immediate

symptom is non-specific fever).

• Malaria is beyond the scope of methods developed for simpler diseases.
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Malaria and rainfall in Kutch (an arid region of NW India)
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• To what extent are cycles driven by immunity rising and falling? To what

extent are they driven by rainfall?
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A dynamic model (Laneri et al, PLoS Comp. Biol., 2010).
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λ, force of infection; κ, latent force of infection; S1, fully susceptible

humans; S2 clinically protected (partially immune); I1, clinically infected;

I2, asymptomatically infected.

Minimal complexity acceptable to scientists

≈ Maximal complexity acceptable to available data



Ed Ionides Inferring the dynamic mechanisms that drive ecological systems 19

Model representation: coupled SDEs driven by Lévy noise

dS1/dt = µBS1P − µS1ES1 + µI1S1I1 + µS2S1S2 − µS1DS1

dS2/dt = µI2S2I2 − µS2S1S2 − µS2I2S2 − µS2DS2

dE/dt = µS1ES1 − µEI1E − µEDE

dI1/dt = µEI1E − µI1S1I1 − µI1I2I1 − µI1DI1

dI2/dt = µI1I2I1 + µS2I2S2 − µI2S2I2 − µI2DI2

dκ/dt = dλ0/dt = (f(t)− κ) ` τ−1

dλi/dt = (λi−1 − λi) ` τ−1 for i = 1, . . . , `− 1

dλ/dt = dλ`/dt = (λ`−1 − λ) ` τ−1

f(t) =
I1(t) + qI2(t)

N(t)
β̄ exp

{ ns∑

i=1

βisi(t) + Ztβ
}dΓ

dt
.

Zt is a vector of climate covariates (here, rainfall).∑ns
i=1 βisi(t) is a spline representation of seasonality.
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Conclusions from malaria data analysis

• Rainfall (with an appropriate delay and threshold) a critical role in

determining interannual cycles.

• Immunity plays a role at faster timescales (controlling annual peaks)
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model cannot come close to this.
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Stochastic differential equations (SDEs) vs. Markov chains

• SDEs are a simple way to add stochasticity to widely used ordinary

differential equation models for population dynamics.

• When some species have low abundance (e.g. fade-outs and

re-introductions of diseases within a population) discreteness can

become important.

• This motivates the consideration of discrete population, continuous time

POMP models (Markov chains).
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Over-dispersion in Markov chain models of populations

• Remarkably, in the vast literatures on continuous-time

individual-based Markov chains for population dynamics (e.g.

applied to ecology and chemical reactions) no-one has previously

proposed models capable of over-dispersion.

• It turns out that the usual assumption that no events occur

simultaneously creates fundamental limitations in the statistical properties

of the resulting class of models.

• Over-dispersion is the rule, not the exception, in data.

• Perhaps this discrepancy went un-noticed before statistical techniques

became available to fit these models to data.
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Implicit models for plug-and-play inference

• Adding “white noise” to the transition rates of existing Markov chain

population models would be a way to introduce an infinitesimal variance

parameter, by analogy with the theory of SDEs.

• We do this by defining our model as a limit of discrete-time models.

We call such models implicit. This is backwards to the usual approach

of checking that a numerical scheme (i.e. a discretization) converges to

the desired model.

• Implicit models are convenient for numerical solution, by definition, and

therefore fit in well with plug-and-play methodology.

• Details in Bretó et al (2009, AoAS); Bretó & Ionides (2011, Stoc. Proc.

Appl.).
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Measles: an exhaustively studied system

• Measles is simple: direct infection of susceptibles by infecteds;

characteristic symptoms leading to accurate clinical diagnosis; life-long

immunity following infection.

S -µSE(t)ξSE(t)
E -µEI

I -µIR
R

Susceptible→ Exposed (latent) → Infected → Recovered,

with noise intensity σSE on the force of infection.

• Measles is still a substantial health issue in sub-Saharan Africa.

• A global eradication program is under debate.

• Comprehensive doctor reports in western Europe and America before

vaccination (≈ 1968) are textbook data.
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• Measles cases in London 1944–1965 (circles and red lines) and a

deterministic SEIR fit (blue line) (from Grenfell et al, 2002).

• A deterministic fit, specified by the initial values in January 1944,

captures remarkably many features.
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Is demographic stochasticity (σSE = 0) plausible?

• Profile likelihood for σSE and effect on estimated latent period (L.P.) and

infectious period (I.P.) for London, 1950–1964.

• Variability of≈ 5% per year on the infection rate substantially improves

the fit, and affects scientific conclusions (He et al, JRSI, 2010).
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Interpretation of over-dispersion

• Social and environmental events (e.g., football matches, weather) lead

to stochastic variation in rates: environmental stochasticity.

• A catch-all for other model mis-specification? It is common practice in

linear regression to bear in mind that the “error” terms contain

un-modeled processes as well as truly stochastic effects. This reasoning

can be applied to dynamic models as well.
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Conclusions and outstanding challenges

• Plug-and-play statistical methodology permits likelihood-based analysis

of flexible classes of stochastic dynamic models.

• It is increasingly possible to carry out data analysis via nonlinear

mechanistic stochastic dynamic models. This can build links between

the mathematical modeling community (within which models are typically

conceptual and qualitative) and quantitative applications (testing

hypotheses about mechanisms, forecasting, evaluating the

consequences of interventions). Increasingly many long time series are

available. Much work remains to be done!

• Many models of interest are beyond current algorithms & computational

resources. New data types (e.g., genetic markers for some or all reported

individuals) both enable and require the fitting of more complex models.
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Thank you!

These slides (including references for the citations) are available at

www.stat.lsa.umich.edu/∼ionides/pubs
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