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We seek a “mechanistic” approach to modeling and
inference for dynamic systems. What does this mean?

Write down equations, based on scientific understanding of a dynamic
system, which describe how it evolves with time.

Further equations describe the relationship of the state of the system
to available observations on it.

Data analysis via mechanistic models concerns drawing inferences
from the available data about the hypothesized equations.

Questions of general interest: Are the data consistent with a
particular model? If so, for what range of values of model parameters?
Does one mechanistic model describe the data better than another?

A defining principle: the model structure should be chosen based on
scientific considerations, rather than statistical convenience.



Statistical challenges for nonlinear mechanistic modeling in
ecology and epidemiology

1 Combining measurement noise and process noise.

2 Including covariates in mechanistically plausible ways.

3 Continuous time models.

4 Modeling and estimating interactions in coupled systems.

5 Dealing with unobserved variables.

6 Spatiotemporal data and models.

7 Inferences from genetic sequence data.

(1–6) were enumerated by Bjornstad and Grenfell (Science, 2001).

(1–5) are now routinely solved using modern methods for nonlinear
partially observed Markov process (POMP) models (Ionides et al., 2015;
King et al., 2016).

(7) was described by Grenfell et al (Science, 2004) and a general POMP
solution was shown by Smith et al (Molecular Biology & Evolution, 2017).



Overview of sequential Monte Carlo

Sequential Monte Carlo (SMC), a.k.a. the particle filter, is a
standard tool for fitting mechanistic dynamic models to nonlinear
non-Gaussian time series.

SMC allows full-information statistical inference. Standard MCMC
methods struggle with POMP models; many other methods involve
information loss or approximations.

SMC struggles with a curse of dimensionality preventing the use of
the basic algorithm when the dimension of the dynamic system gets
large (in practice, say, more than 10 dimensions).

Theoretical results suggest that, in some situations, this curse can
avoided (Rebeschini and van Handel, 2015).

We have a method that partially avoids the curse and is practical on
some problems with 80 latent dynamic dimensions and 20 measured
dimensions: Susceptible-Exposed-Infected-Recovered (SEIR) dynamics
for measles in 20 connected cities.



A modified SMC algorithm for spatiotemporal data

The Guided intermediate resampling filter (GIRF) breaks up the
information in the data into small pieces that are used incrementally
to inform the particles and “guide” them toward the next observation.

Observations y∗1:N = (y∗1, . . . , y
∗
N ) are collected at times t1:N .

We require a latent Markov process {X(t), t0 ≤ t ≤ tN} to be
defined in continuous time. We assess particles at intermediate times
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using a reweighting function

un,s(x).

Our algorithm works asymptotically for almost any un,s(x), but gains
numerical efficiency if this reweighting function approximates the
conditional likelihood of subsequence measurements.



Input and output for the guided intermediate resampling
filter (GIRF)

input:
Simulator for latent process initial density, fX0(x0 ; θ)

Simulator for transition density, fX(t)|X(s)(· | · ; θ), t0 ≤ s < t ≤ tN
Evaluator for measurement density, fYn|Xn

(· | · ; θ), n ∈ 1 :N

Data, y∗1:N . Parameter vector, θ. Number of particles, J .

Number of intermediate reweighting steps, S.
Evaluator for reweighting function, ut(xt).

output:
Filtered particles, {XF,j

N , j ∈ 1 :J}.
Log likelihood estimate, ˆ̀≈ log fY1:N (y∗1:N ; θ).

Algorithms based on a simulator of the dynamic model are plug-and-play.
This property ensures broad applicability.

GIRF has the structure of a particle filter with the addition of the
reweighting function evaluated at the intermediate reweighting steps.



The guided intermediate resampling filter (GIRF)

Initialize: ˆ̀= 0, XF,j
0,0 ∼ fX0(x0 ; θ), uj = 1 for j in 1 :J .

For n in 0 :N − 1
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/
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End For



From filtering to inference

Filtering estimates latent states given data and a model. It doesn’t
estimate parameters.

Iterated filtering algorithms (Ionides et al., 2015) filter repeatedly
with perturbed parameters to maximize the likelihood.

Iterated filtering tends to be more effective on large POMP models
than alternative methods (e.g., Particle Markov chain Monte Carlo,
Monte Carlo Expectation-Maximization).

GIRF can be used within an iterated filtering algorithm.



Measles in 20 UK cities, 1944–1965
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Motivation for studying measles

Standard models have arisen from the extensive study of
pre-vaccination measles. To demonstrate the new methodology, we
chose a situation where basic models for transmission within a city are
well established.

Coupling between cities is less well understood. We analyze the ten
largest plut ten other randomly selected UK cities.

Coupling between neighborhoods of a single city, or aggretated at
county or state level gives rise to similar numbers of spatial units.

Measles remains a major cause of morbidity and mortality globally. It
may be an upcoming target for global eradication.



A spatiotemporal model for measles

We start with the Susceptible-Exposed-Infected-Recovered (SEIR)
measles model of He et al. (2010) and add spatial interaction.

For each city k, the population dynamics satisfy a set of equations,

dSk
dt

= −
dNSE,k(t)

dt
− µSk(t) + rk(t)

dEk
dt

=
dNSE,k(t)

dt
−
dNEI,k(t)

dt
− µEk(t)

dIk
dt

=
dNEI,k(t)

dt
−
dNIR,k(t)

dt
− µIk(t),

k = 1, · · · , d,

where, NSE,k(t), NEI,k(t), NIR,k(t) denote the cumulative number of
transitions between the compartments up to time t in city k, µ is the
per-capita mortality rate, and rk the susceptible recruitment rate.



The cumulative transitions were modelled as negative binomial processes,
following the construction of Bretó et al. (2009). Specifically,

E [NSE,k(t+ dt)−NSE,k(t)]

= β(t) · Sk(t) ·

[(
Ik
Pk

)α
+
∑
m

vkm
Pk

((
Im
Pm

)α
−
(
Ik
Pk

)α)]
dt+ o(dt),

where β(t) is transmission coefficient with time dependence due to
seasonality, α is a mixing coefficient, Pk is the population at city k, and
vkl the number of travelers from city k to l.

The gravity model of Xia et al. (2004) describes the number of travelers:

vkl = G · d̄
P̄ 2
· Pk · Pl

dkl
.

Here, the gravitation constant G was rescaled using the average population
of all 20 cities, P̄ , and the average distance of all pairs of cities, d̄.

Data are weekly cumulative reported cases, modeled using an
overdispersed binomial distribution.



Coupled measles SEIR in 20 cities: profiling contact rate

Monte Carlo adjusted profile (MCAP) methodology of (Ionides et al.,
2017) indicates a cutoff of 61.6, rather than the usual 1.92, for the
confidence interval construction. Here, Monte Carlo variability is larger
than statistical uncertainty.



Conclusions

The guided intermediate resampling filter (GIRF) can permit
statistical inference for coupled nonlinear partially observed stochastic
dynamic systems of moderate dimension.

GIRF enables likelihood-based inference for a spatiotemporal SEIR
model with 20 coupled cities.

GIRF is plug-and-play, though it needs a tractable approximation to a
conditional transition density.

Techniques assisting the use of a Monte Carlo filter for parameter
estimation and hypothesis testing include:

Iterated filtering methodology to adapt a successful filter for maximum
likelihood estimation.
Monte Carlo adjusted profile (MCAP) methodology to enable proper
inference despite non-negligible Monte Carlo error.
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Theoretical results

Assumption 1. The predictive likelihood can be closely approximated.

Assumption 2. The length of subinterval is sufficiently small.

Assumption 3. The POMP possesses conditional mixing property
given data.

Sketch of Theorem: Under assumptions 1, 2, and 3, for any h with
‖h‖∞ ≤ 1,∣∣∣∣∣∣ 1J

J∑
j=1

h(XF,j
tN

)− E
[
h(XN )|Y1:N = y∗1:N

]∣∣∣∣∣∣ ≤ a1 +
a2(d)√
J

with high probability. The constant a2(d) increases slowly in d and is
dependent on the accuracy of un,s as an approximation to the predictive
likelihood.


