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What is a “mechanistic” approach to time series analysis?

• Write down equations, based on scientific understanding of a dynamic

system, which describe how it evolves with time.

• Further equations describe the relationship of the state of the system

to available observations on it.

• Mechanistic time series analysis concerns drawing inferences from the

available data about the hypothesized equations.

• Questions of general interest: Are the data consistent with a particular

model? If so, for what range of values of model parameters? Does one

mechanistic model describe the data better than another?

• A defining principle: the model structure should be chosen based on

scientific considerations, rather than statistical convenience.
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Why quantify biological population dynamics?

• Conservation. Mankind is increasingly responsible for managing

ecosystems. This requires a quantitative understanding of population

behavior.

• Public health. Pathogens are also biological populations. Despite

successes of vaccination and medical treatment, new diseases are

emerging (SARS, HIV/AIDS) and old ones re-emerging due to drug

resistant strains (malaria, tuberculosis). Treating the pathogen as part

of an ecosystem is one approach to understanding and controlling

emergent and re-emergent diseases.

• Basic scientific interest.
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Time series data of sufficient quantity and quality to justify

mechanistic modeling are increasingly available:

Hot off the Press

• King, Ionides, Pascual and Bouma. Inapparent infections and

cholera dynamics. To appear in Nature.

• Cauchemez, Valeron, Boëlle, Flahault and Ferguson. Estimating

the impact of school closure on influenza transmission from Sentinel

data. Nature, 10 April 2008.
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Inference for nonlinear mechanistic models in ecology

Six problems of Bjornstad and Grenfell (Science, 2001), identifying

obstacles for ecological modeling and inference:

1. Combining measurement noise and process noise.

2. Including covariates in mechanistically plausible ways.

3. Continuous time models.

4. Modeling and estimating interactions in coupled systems.

5. Dealing with unobserved variables.

6. Modeling spatial-temporal dynamics.
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Wanted:

A framework for modeling and inference al-

lowing consideration of arbitrary nonlinear,

partially observed, vector-valued, time series

models.
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State space models

A state space model is a partially observed Markov process. It consists

of an unobserved state process xt and an observation process yt which is

conditionally independent of the past given xt.

• xt models a system (discrete or continuous time, usually with some

unkown parameters).

• yt models the available observations (discrete time).

Does this meet the requirements for the modeling framework?
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Example: cholera (a diarrheal disease caused by the bacterium

Vibrio cholerae)
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Cholera cases by serotype for Matlab, Bangladesh

• Biweekly hospital cases from International Center for Diarrheal

Disease Research in Matlab, Bangladesh.

• Two serotypes: Inaba (dashed) and Ogawa (solid grey).
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A specific question

• Do the data support a hypothesis that cross-immunity between strains

explains the apparent strain cycling?
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Observational data vs lab experiments for understanding

disease dynamics

• To learn how to maintain and control wild lion communities, do you

study lions in a zoo? No, you study them in the African bush (maybe

this will help construct viable zoo communities).

• To learn about the effects of pH on V. cholerae, do you do a lab

experiment?



Ed Ionides Mechanistic models for time series 14

Other open questions for cholera epidemiology

• Seasonality.

• Relation to climate drivers, e.g. El Niño.

• A role for bacteriophage?

• forecasting

– why do some communities have cholera, others not?

• control measures

– why are tube wells not more effective?
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A general mechanistic model

• A compartment model groups a population into c compartments.

• X(t) = (X1(t), . . . , Xc(t)) can be written in terms of the flows

Nij(t) from i to j, via a conservation of mass identity:

Xi(t) = Xi(0) +
∑

j 6=i

Nji(t)−
∑

j 6=i

Nij(t).

• Each flow Nij is associated with a rate function µij = µij(t,X(t)).

• Here, Xi(t) is non-negative integer valued. X(t) models a

population divided into c groups; µij is the rate at which each

individual in compartment i moves to j.

• This makes the compartment model closed. Immigration, birth and

death can be included via source and sink compartments.
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Why do we want a Markov chain model?

• Occasional low counts / fadeouts occur. A continuous approximation to

the population (e.g. stochastic differential equations) may be

inappropriate.

Why do we want to add noise to the rates?

• Without noise, infinitesimal mean equals infinitesimal variance.

• Noise is a way to give over-dispersion, often critical to fit data (think

of generalized linear models).

• For each rate, we specify an integrated noise process Γij(t) giving

rise to a noise process ξij(t) = d
dtΓij(t).
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Properties of the integrated noise processes Γij(t)

P1 Independent increments.

P2 Stationary increments.

P3 Non-negative increments. Therefore, ξij(t) = d
dtΓij(t) is

non-negative white noise.

P4 Unbiased multiplicative noise: E[Γij(t)] = t.

P5 Partial independence: Γij independent of Γik for j 6= k.

P6 Full independence: all noise processes independent.

P7 Gamma noise: marginally, Γij(t) is a gamma process.



Ed Ionides Mechanistic models for time series 18

Implicitly defined models

We use an Euler approximation to define a process, rather than vice versa:

1. Divide the interval [0, T ] into N intervals of width δ = T/N

2. Set initial value X(0)

3. FOR n = 0 to N − 1

4. Generate noise increments {∆Γij = Γij(nδ + δ)− Γij(nδ)}
5. Generate process increments (∆Ni1, . . . , ∆Ni,i−1, ∆Ni,i+1, ∆Nic, Ri)

∼ Multinomial(Xi(nδ), pi1, . . . , pi,i−1, pi,i+1, . . . , pic, 1−
P

k 6=i pik)

where pij = pij({µij(nδ, X(nδ))}, {∆Γij}) is given in (1)

6. Set Xi(nδ + δ) = Ri +
P

j 6=i ∆Nji

7. END FOR



Ed Ionides Mechanistic models for time series 19

The limiting Markov chain is specified follows:

P [∆Nij = nij , for all 1 ≤ i ≤ c, 1 ≤ j ≤ c, i 6= j | X(t) = (x1, . . . , xc)]

= E




c∏

i=1





(
xi

ni1 . . . nii−1 nii+1 . . . nic ri

)
(1−∑

k 6=ipik)ri

∏

j 6=i

p
nij

ij






 + o(δ)

where ri = xi −
∑

k 6=i nik,
(

n
n1 ... nc

)
is a multinomial coefficient and

pij = pij({µij(t, x)}, {∆Γij(t)})
= (1− exp {−

∑

k

µik∆Γik})µij∆Γij

/∑

k

µik∆Γik,

with µij = µij(t, x).
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Theorem 1 (Breto, He, Ionides & King: in review). Supposing

assumptions (P1–P5) about the noise process, this limit does indeed

specify a Markov chain.

Proof. An explicit construction involving exponential transition clocks for

each individual, based on the method of Sellke (1983). Such methods are

standard for networks of interacting Poisson processes (i.e., our

compartment model with no noise). Care is required here due to the

introduction of noise.
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Theorem 1, formal statement. Suppose (P1–P5) and that µij(t, x) is
uniformly continuous as a function of t. Let C(ζ, 0) be the compartment
containing individual ζ at time t = 0. Set τζ,0 = 0, and generate
independent Exponential(1) random variables Mζ,0,j for each ζ and
j 6= C(ζ, 0). For m ≥ 1, recursively set

τζ,m,j = inf
n

t :

Z t

τζ,m−1

µC(ζ,m−1),j(s, X(s)) dΓC(ζ,m−1),j(s) > Mζ,m−1,j

o
.

At time τζ,m = minj τζ,m,j , set C(ζ, m) = arg minj τζ,m,j and for

each j 6= C(ζ,m) generate an independent Exponential(1) random

variable Mζ,m,j . The increments

dNij(t) =
∑

ζ,m I{C(ζ, m− 1) = i, C(ζ, m) = j, τζ,m = t}
specify a Markov chain X(t) whose infinitesimal transition probabilities

are given by the limit of the numerical algorithm as δ → 0.
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Theorem 2 (Breto, He, Ionides & King: in review). For the case of

independent gamma noise, an analytic formula is available for the

infinitesimal probabilities and infinitesimal moments of this chain.
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Theorem 2, formal statement. Supposing (P1–P7), the infinitesimal

transition probabilities are

P [∆Nij = nij , for all i 6= j | X(t) = (x1, . . . , xc)]

=
∏

i

∏

j 6=i

π(nij , xi, µij , σij) + o(δ)

where

π(n, x, µ, σ) = 1{n=0} + δ

 
x

n

!
nX

k=0

 
n

k

!
(−1)n−k+1σ−2 ln

`
1 + σ2µ(x− k)

´
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Inference for partially observed Markov processes (pomps)

• Ionides, Bretó and King (Proc. Natl. Acad. Sci., 2006) developed an

“iterated filtering” method for likelihood based inference for general

pomp models.

• This is implemented in the R package pomp, available from CRAN.

• Iterated filtering, implemented by sequential Monte Carlo (a “particle

filter”) has a plug-and-play property: only an algorithm for simulation

of sample paths need be supplied to the inference methodology.

• Iterated filtering thus fits in nicely with our notion of implicitly defined

mechanistic models.
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Key idea of iterated filtering

• Bayesian inference for time-varying parameters becomes a solveable

filtering problem. Set θ = θt to be a random walk with

E[θt|θt−1] = θt−1 Var(θt|θt−1) = σ2

• The limit σ → 0 can be used to maximize the likelihood for fixed

parameters.
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Two analogies

• Like the EM algorithm, iterated filtering is an optimization trick that

takes advantage of a special model structure (partially observed

Markov processes).

• Like simulated annealing, iterated filtering introduces stochasticity,

resulting in “thermal fluctuations” which “cool” toward a “freezing point”

at a likelihood maximum.
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Theorem 1. (Ionides, Bretó & King, 2006)

Suppose θ̂0, C and y1:T are fixed and define

θ̂t = θ̂t(σ) = E[θt|y1:t]

Vt = Vt(σ) = Var(θt|y1:t−1)

Assuming sufficient regularity conditions for a Taylor series expansion,

limσ→0
∑T

t=1 V −1
t (θ̂t − θ̂t−1) = (∂/∂θ) log f(y1:T |θ, σ=0)

∣∣∣
θ=θ̂0

The limit of an appropriately weighted average of local filtered

parameter estimates is the derivative of the log likelihood.
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Theorem 2. (Ionides, Bretó & King, 2006)

Set θ̂(n+1) = θ̂(n) + σ2
nM(∇`(θ̂(n)) + ηn), where M is a positive

definite symmetric matrix. Suppose the following:

1. `(θ) is twice continuously differentiable and uniformly convex.

2. limn σ2
nn1−α > 0 for some α ∈ (0, 1).

3. {ηn} has E[ηn] = o(1), Var(σ2
nηn) = o(1), Cov(ηm, ηn) = 0

for m 6= n.

If there is a θ̂ with∇`(θ̂) = 0 then θ̂(n) converges in probability to θ̂.

With appropriate assumptions, iterated filtering does converge to a

local maximum if “cooled” sufficiently slowly.
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Previous work on likelihood inference for nonlinear partially

observed dynamical systems

• In principle, the Bayesian posterior can be found for fixed (non

time-varying) parameters. In practice, this is hard to do (Liu and West,

2001).

• Direct calculation of the likelihood surface (Hurzeler and Kunsch, 2001)

is not practically feasible on moderate or large dynamical systems.

• Markov Chain Monte Carlo methods such as the Stochastic

Expectation-Maximization algorithm (Cappe, 2005) are not readily

applicable to continuous time models. In addition, they lack the

plug-and-play property.



Ed Ionides Mechanistic models for time series 30

S ¡
¡

¡
¡

¡µ
λ1ξ1

@
@

@
@

@R
λ2ξ2

I1
-

r

I2 -
r

S2
-

(1− γ)λ2ξ2

S1 -
(1− γ)λ1ξ1

I∗2 @
@

@
@

@R

r

I∗1 ¡
¡

¡
¡

¡µ

r

R

Cholera model with interacting serotypes.

S, susceptible to both Inaba and Ogawa serotypes;

I1, infected with Inaba; I2, infected with Ogawa;

S1, susceptible to Inaba (immune to Ogawa); S2, susceptible to Ogawa (immune to Inaba);

I∗1 , infected with Inaba (immune to Ogawa); I∗2 , infected with Ogawa (immune to Inaba);

R, immune to both serotypes.

Births enter S, and all individuals have a mortality rate m.
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λ1 = β(t) (I1(t)+I∗1 (t))α

P (t) + w λ2 = β(t) (I2(t)+I∗2 (t))α

P (t) + w

log β(t) = b0(t− 1990) +
∑6

i=1 bisi(t)

µSI1 = λ1 µSI2 = λ2

µS1I∗1 = (1− γ)λ1 µS2I∗2 = (1− γ)λ2

µI1S2 = µI2S1 = r µI∗2 R = µI∗1 R = r

µXjD = m for Xj ∈ {S, I1, I2, S1, S2, I
∗
1 , I∗2 , R}

ξSI2 = ξS2I∗2 = ξ2(t) ξSI1 = ξS1I∗1 = ξ1(t)

Interpretation of diagram as a multinomial process with random rates.

ξ2(t) and ξ1(t) are independent gamma noise processes, each with infinitesimal

variance parameter σ2.

Compartments B and D model demographic events (births, deaths).

Seasonality is modeled via a periodic cubic B-spline basis {si(t), i = 1, . . . , 6}.
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θ̂A SEA θ̂B SEB

r 38.42 − 36.91 3.88

ρ 0.067 − 0.653 0.069

γ 0.400 0.087 1.00 0.41

σ 0.1057 0.0076 0.0592 0.0075

φ 0.014 0.30 0.0004 0.024

w × 103 0.099 0.022 0.0762 0.0072

α 0.860 0.015 0.864 0.017

b0 −0.0275 0.0017 −0.0209 0.0015

b1 4.608 0.098 3.507 0.083

b2 5.342 0.074 3.733 0.091

b3 5.723 0.075 4.448 0.055

b4 5.022 0.076 3.534 0.065

b5 5.508 0.064 4.339 0.053

b6 5.804 0.059 4.274 0.039

` −3560.23 −3539.11
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Cross-immunity profile likelihood for regime A, yielding a 99% confidence

interval for γ of (0.20, 0.61).
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Interpretation of results

• Cross-immunity is weakly identified in both regimes A and B

(standard errors are large).

• Regime B, which fits the data considerably better, essentially ignores

asymptomatic cholera (estimated reporting rate is close to 1).

• Since Regime A has been the orthodoxy, this is a controversial

finding. However, neither A nor B is entirely satisfactory.

Improvements in the modeling of short-term disease dynamics (King

et al, 2008) may further clarify the role of cross-immunity.
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Conclusions

• Plug-and-play statistical methodology permits likelihood-based

analysis of flexible classes of stochastic dynamic models.

• This has led to a need for economically-parameterized models for

interacting populations (compartment models).

• It is increasingly possible to carry out data analysis via nonlinear

mechanistic stochastic dynamic models. This should help to build

a link between the mathematical modeling community (for whom

models are typically conceptual and qualitative) and quantitative

applications (testing hypotheses about mechanisms, forecasting,

evaluating the consequences of interventions).
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Thank you!

These slides are available at

www.stat.lsa.umich.edu/∼ionides/pubs/

mechanistic-talk.pdf
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Maximum Likelihood via Iterated Filtering (MIF)

(Ionides, Bretó & King, PNAS, 2006)

Select inital value θ̂(1) and algorithmic parameters σ1, c, α and N .

For n in 1, . . . , N

(i) set σ = σ1α
n−1 and initialize E[θ(n)

0 ] = θ̂(n), Var(θ(n)
0 ) = cσ2.

(ii) evaluate the filtering means θ̂
(n)
t = E[θ(n)

t |y1:t] and the prediction

variances Vt,n = Var(θ(n)
t |y1:t−1), for t = 1, . . . , T .

(iii) θ̂(n+1) = θ̂(n) + V1,n
∑T

t=1 V −1
t,n (θ̂(n)

t − θ̂
(n)
t−1)

An average of the filtering means, with weights depending on the

filtering variances, converges to the maximum of the likelihood

(under regularity conditions)
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Implementing MIF using Monte Carlo: A brief tutorial

• Let {XF
t,j , j = 1, . . . , J} solve the filtering problem at time t by

having (approximately) marginal density f(xt|y1:t).

• Move particles according to the state process dynamics:

Make XP
t+1,j a draw from f(xt+1|xt=XF

t,j). Then {XP
t+1,j} is a

draw from f(xt+1|y1:t), solving the prediction problem at time t + 1.

• Prune particles according likelihood given data:

Make XF
t+1,j a drawn from {XP

t+1,j} with probability proportional to

wj = f(yt|xt=XP
t,j). Then {XF

t+1,j} solves the filtering problem at

t + 1.

• E[xt|y1:t] and Var(xt|y1:t−1) are calculated as the sample mean

and variance of XF
t,k and XP

t,k respectively.


