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Outline

• What is sequential Monte Carlo (SMC)?

• Inferring unknown parameters via SMC.

• The plug-and-play property and its relationship to SMC.

• SMC for transmission dynamics: lessons from case studies.

• Sequence data to inform disease transmission dynamics.

i. SMC for transmission dynamics conditional on a phylogeny.

ii. SMC to estimate a phylogeny.

iii. SMC to jointly estimate a phylogeny and transmission dynamics.

• Exorcising the curse of dimensionality for SMC.
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To talk about SMC, we first have to introduce the models on which SMC

operates... partially observed Markov process (POMP) models.
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Partially observed Markov process (POMP) models

• A Markov process is a time-indexed stochastic process for which the

past and future are conditionally independent given the present.

• We allow discrete-time, continuous-time, discrete-valued,

continuous-valued, vector-valued, function-valued, etc.

For phylodynamics, the state of the Markov process could be a tree,

with branches and leaves being added through time.

• If any variable that affects the future evolution of a system is modeled in

the current state, then the Markov property holds tautologously.

• Delays cannot usually be modeled in a finite dimensional Markov

process, except in specific cases (e.g., gamma-distributed delays).

• Partial observations are noisy functions of the process, observed at a

discrete set of times.
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Motivations for the POMP framework

• POMP models have repeatedly been proposed as a general framework

for modeling biological systems.

• A reasonable tradeoff between generality and tractability.

• Computationally practical algorithms exist for reconstructing unobserved

variables from data (filtering) and for evaluating the likelihood function.

• Difficulties arise for large state spaces.

• Theoretical properties of POMPs are well studied.
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Some history of sequential Monte Carlo (SMC)

• SMC grew in the 1990s, simultaneously called particle filtering,

bootstrap filtering, Monte Carlo filtering, sequential importance sampling,

and the condensation algorithm.

• Used in physics and chemistry since the 1950s: marketed as

“Poor man’s Monte Carlo” (Hammersley & Morton, 1954).

• In modern theory, SMC and MCMC have similar asymptotic guarantees.

• SMC provides an alternative to MCMC for many computations.

• For dynamic systems, SMC is preferred.



7

An evolutionary description of SMC algorithms

• An SMC algorithm consists of a swarm of particles evolves according

to a stochastic dynamic system.

• Particles consistent with data are propagated; those inconsistent with

data are pruned. Ancestry within the swarm can be represented as a tree.

When elements of the swarm are trees, we have a tree of trees!

• The propagation and pruning are done in such a way that SMC

approximates an ideal nonlinear filter.

• SMC gives unbiased likelihood estimates, with more particles giving

reduced variance.
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Basic SMC for a Markov process {X(t)} with data {y1, y2, . . . }
observed at times {t1, t2, . . . }

• The conditional distribution of X(tn) given data up to time tn is

represented by a swarm of J particles, {XF
n,j , j = 1, . . . , J}.

• Each particle XF
n,j is simulated forward from time tn to time tn+1. The

resulting swarm, denoted {XP
n+1,j , j = 1, . . . , J}, represents the

distribution of X(tn+1) given data up to time tn.

Stochasticity in the update adds phenotypic variation to the swarm

• Each particle in the prediction swarm is resampled with probability

proportional to its likelihood given the observation at time tn+1. The

resulting swarm represents the filtering distribution at time tn+1.

This natural selection reduces phenotypic variation in the swarm.
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When and why does SMC fail?

• We expect evolution to be good at finding fitness improvements locally in

genetic space.

• We do not expect evolution (or evolutionary optimization algorithms, or

any other known methods) to be good at finding globally optimal solutions

to complex problems.

What is the globally “optimal” animal?

• The theory for SMC (and more generally, for MCMC, simulated

annealing, etc) typically assures global convergence given sufficient

computer time.

• Practical interpretation of this theory requires care! Practitioners should

usually interpret global convergence results as guarantees of good local

behavior.
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Particle depletion

• Evolution since the most recent common ancestor (MRCA) defines the

‘local’ neighborhoods which an evolutionary search can hope to explore.

• When selection is strong (in other words, the offspring distribution is

highly skewed) the MRCA can be only a few generations back even for a

large number of particles (say, J = 105).

• The unpleasant phenomenon of the proximity of the MRCA and its

consequences for global search is known as particle depletion.
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Inference for POMPs

• SMC estimates latent dynamic variables, and integrates them out to

approximate the likelihood, for a given model.

• Using these noisy and computationally expensive likelihood evaluations

in Bayesian or frequentist inference is tricky. The issue has inspired much

research over the past decade.

• Iterated filtering aims to maximize the likelihood by adding a random

walk in parameter space.

This adds diversity to the genotype of the swarm, so that selection

on the phenotype improves its fitness (i.e., the likelihood).

• Particle MCMC aims to simulate a posterior distribution by plugging an

SMC estiamte of the likelihood into an MCMC procedure in the parameter

space.
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The plug-and-play property

• Iterated filtering and particle MCMC share an important property: they

require simualation from the dynamic model but they do NOT require

explicit computation of transition probabilities.

• This is called the plug-and-play property.

• Plug-and-play facilitates model development (we can simualate from

many models of interest for which transition probabilities are hard to

compute).

• Plug-and-play facilitates software development: inference software

simply takes as its argument code to generate simulations.

• Other plug-and-play methods, such as synthetic likelihood and

approximate Bayesian computation (ABC) have also proved popular.
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Categorizing some POMP inference methods

Plug-and-play

Frequentist Bayesian

Full-information iterated filtering particle MCMC

Feature-based simulated moments ABC

Not plug-and-play

Frequentist Bayesian

Full-information EM algorithm MCMC

Feature-based Yule-Walker∗ ???

∗Yule-Walker is the method of moments for ARMA, a linear Gaussian POMP.
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Six problems of Bjørnstad and Grenfell (Science, 2001)

Obstacles for ecological inference via nonlinear mechanistic models:

1. Combining measurement noise and process noise.

2. Including covariates in mechanistically plausible ways.

3. Continuous time models.

4. Modeling and estimating interactions in coupled systems.

5. Dealing with unobserved variables.

6. Modeling spatial-temporal dynamics.

Spatial-temporal and high dimensional systems remain a challenge.

Genetic data is a new frontier!
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Example: malaria (mosquito-transmitted Plasmodium infection)
Malaria_Life_Cycle.gif (GIF Image, 543x435 pixels) http://medpediamedia.com/u/Malaria_Life_Cycle.g...

1 of 1 07/19/2010 12:06 PM

Despite extensive study of the disease system (mosquito, Plasmodium &

human immunology) malaria epidemiology remains hotly debated.
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Malaria transmission: Modeling and inference

• The Gates Foundation targets eradication. The previous Global Malaria

Eradication Program (1955-1969) ultimately failed, though with some

lasting local successes.

• Malaria transmission dynamics have much local variation (vectors and

their ecology; human behaviors).

From the perspective of statistical methodology

• Despite the huge literature, no dynamic model of malaria transmission

has previously been fitted directly to population-level time series data.

• Difficulties include: Incomplete and complex immunity; dynamics in both

mosquito and human stages; non-specific diagnosis via fever.

• Malaria is beyond the scope of methods developed for simpler diseases.
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Malaria and rainfall in Kutch (an arid region of NW India)
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• To what extent are cycles driven by immunity rising and falling? To what

extent are they driven by rainfall?
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(Laneri et al, PLoS Comp. Biol., 2010; Bhadra et al, JASA, 2011)

µS1E , force of infection; λ, latent force of infection; S1, fully susceptible

humans; S2 clinically protected (partially immune); I1, clinically infected;

I2, asymptomatically infected.

Minimal complexity acceptable to scientists

≈ Maximal complexity acceptable to available data
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Model representation: coupled SDEs driven by Lévy noise

dS1/dt = µBS1P − µS1ES1 + µI1S1I1 + µS2S1S2 − µS1DS1

dS2/dt = µI2S2I2 − µS2S1S2 − µS2I2S2 − µS2DS2

dE/dt = µS1ES1 − µEI1E − µEDE

dI1/dt = µEI1E − µI1S1I1 − µI1I2I1 − µI1DI1

dI2/dt = µI1I2I1 + µS2I2S2 − µI2S2I2 − µI2DI2

dλi/dt = (λi−1 − λi) k τ−1 for i = 1, . . . , k

µS1E(t) = λk(t)

λ(t) = λ0(t) =
I1(t) + qI2(t)

N(t)
exp

{ ns∑

i=1

βisi(t) + Ztβ
}dΓ

dt
.

Zt is a vector of climate covariates (here, rainfall).∑ns
i=1 βisi(t) is a spline representation of seasonality.

Parasite latency within the vector has mean τ and shape parameter k.
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Conclusions from malaria data analysis

• Rainfall (with an appropriate delay and threshold) has a critical role in

determining interannual cycles.

• Immunity has a minor role, at a fast timescale (limiting annual peaks)
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Stochastic differential equations (SDEs) vs. Markov chains

• SDEs are a simple way to add stochasticity to widely used ordinary

differential equation models for population dynamics.

• When some species have low abundance (e.g. fade-outs and

re-introductions of diseases within a population) discreteness can

become important.

• This motivates the consideration of discrete population, continuous time

POMP models (Markov chains).
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Over-dispersion in Markov chain models of populations

• Remarkably, in the vast literatures on continuous-time

individual-based Markov chains for population dynamics (e.g.

applied to ecology and chemical reactions) no-one has previously

proposed models capable of over-dispersion.

• It turns out that the usual assumption that no events occur

simultaneously creates fundamental limitations in the statistical properties

of the resulting class of models.

• Over-dispersion is the rule, not the exception, in data.

• Perhaps this discrepancy went un-noticed before statistical techniques

became available to fit these models to data.
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Implicit models for plug-and-play inference

• Adding white noise to the transition rates of existing Markov chain

population models would be a way to introduce an infinitesimal variance

parameter, by analogy with the theory of SDEs.

• We do this by defining our model as a limit of discrete-time models.

We call such models implicit. This is backwards to the usual approach

of checking that a numerical scheme (i.e. a discretization) converges to

the desired model.

• Implicit models are convenient for numerical solution, by definition, and

therefore fit in well with plug-and-play methodology.

• Details in Bretó & Ionides (2011, Stoc. Proc. Appl.).
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Measles: an exhaustively studied system

• Measles is simple: direct infection of susceptibles by infecteds;

characteristic symptoms leading to accurate clinical diagnosis; life-long

immunity following infection.

S -µSE(t)ξSE(t)
E -µEI

I -µIR
R

Susceptible→ Exposed (latent) → Infected → Recovered,

with noise intensity σSE on the force of infection.

• Measles is still a substantial health issue in sub-Saharan Africa.

• A global eradication program is under debate.

• Comprehensive doctor reports in western Europe and America before

vaccination (≈ 1968) are textbook data.
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• Measles cases in London 1944–1965 (circles and red lines) and a

deterministic SEIR fit (blue line) (from Grenfell et al, 2002).

• A deterministic fit, specified by the initial values in January 1944,

captures remarkably many features.



26

Is demographic stochasticity (σSE = 0) plausible?

• Profile likelihood for σSE and effect on estimated latent period (L.P.) and

infectious period (I.P.) for London, 1950–1964.

• Variability of≈ 5% per year on the infection rate substantially improves

the fit, and affects scientific conclusions (He et al, JRSI, 2010).
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Interpretation of over-dispersion

• Social and environmental events (e.g., football matches, weather) lead

to stochastic variation in rates: environmental stochasticity.

• A catch-all for model misspecification? It is common practice in linear

regression to bear in mind that the “error” terms contain un-modeled

processes as well as truly stochastic effects. This reasoning can be

applied to dynamic models as well.
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SMC conditional on a phylogeny (Rasmussen et al, 2011)

• If uncertainty in the phylogeny is negligible, then a coalescent process

on this phylogeny can be used as a measurement model for applying

SMC techniques to stochastic dynamic transmission models.

• This reduces the problem to nonlinear time series analysis, where the

data are a time series of the number of coalescent times in small, discrete

time intervals.

• Some uncertainty in the estimated phylogeny can be accounted for, but

mutually consistent estimation of the phylogeny and the transmission

model is currently unresolved.
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SMC to estimate a phylogeny (Bouchard-Côté et al, 2012)

• Build a phylogeny backwards in time, so a “particle” is a forest of trees

that combine as the filtering proceeds.

• Combine a coalescent prior on the forest with usual microevolutionary

models for the sequences.
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SMC for joint estimation of transmission dynamics and phylogeny

(Joint work with Alex Smith and Aaron King)

• For concreteness, focus on a high sequence fraction situation (HIV).

• Each particle is a transmission tree of all infected individuals in a

population. Tree growth follows the forward-time dynamic model.

• Observations are assignments of sequences to branches on the tree.

• Currently, we can filter simulated data from simple models with, say, 100

observed sequences.

• Some improvements are expected through refining the code.

• Is there hope for fundamental algorithmic developments to enable,

say, 1000 sequences and 20-parameter models?
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Exorcising the curse of dimensionality for SMC

• Many things we’d like to do become exponentially harder with increasing

dimension of the data and/or model. This is the curse.

• In general, SMC could require a number of particles exponential in the

length of the time series. This is infeasible. SMC is numerically stable

only when the Markov process has temporal mixing properties.

• Sadly, SMC requires a number of particles exponential in the state

dimension. How can one take advantage of weak spatial coupling (here,

space is a space of trees). A current research area (Rebschini and van

Handel, 2013) that I’m currently investigating with Joon Ha Park.

• Weak coupling arises when lineages interact only through competition

for susceptibles. It has been said that genetic data ‘decorrelate’ the

lineages. But ecological competition still exists and can be critical.
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Thank you!

These slides (including references for the citations) are available at

www.stat.lsa.umich.edu/∼ionides
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