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@ Four years ago, | gave a talk here at MFO with a similar title.

@ Back then, Alex Smith and Aaron King and | had some preliminary
ideas about how to apply sequential Monte Carlo (SMC)
methodology to phylodynamic problems.

@ This talk reports on

@ New approaches to the general problem of scaling SMC inference to

increasingly large and complex systems.
@ Issues specific to SMC-based phylodynamic inference.



Three motivating data analysis challenges

© Time series analysis: cholera in Bangladesh.

e The classic challenge of discovering properties of a nonlinear system
from a single long time series.

o The pomp R package (King et al., 2016) has made this sort of analysis
accessible to Masters level statisticians
(http://ionides.github.io/531wl6/final_project).

@ Panel data analysis: dynamic variation in sexual contact rates.

@ Observations on a collection of units lead to a panel of time series.

e Analyzed together, the panel strengthens inferences available from any
one time series.

o The panelPomp R package (Breté et al., 2018).

© Genetic sequence data: HIV transmission within and between
demographic groups.

o Genetic sequences of pathogens can inform transmission relationships
between infected hosts.

e The genPomp C++ program (Smith et al., 2017).


http://ionides.github.io/531w16/final_project

Monthly cholera deaths in Dhaka, Bangladesh, 1891-1940
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2. Panel data on sexual contacts

@ Mathematical models of HIV transmission struggle to explain
observed incidence due to the low measured probability of
transmission per sexual contact.

@ The anomaly can be resolved by models that include individual-level
variability in sexual behavior over time.

@ Romero-Severson et al. (2015) constructed behavioral models with
various heterogeneities, both between individuals and within
individuals over time. These models were fitted to behavioral panel
data.



Total sexual contacts in 6 month intervals

No. of Contacts

0.5 1.0 1.5 2.0
Follow-up Time, years

@ Time series for 15 units from a panel of 882 gay men who completed
a 2 year longitudinal study.

@ Sexual contacts were reported in various categories: oral, anal,
protected, unprotected, etc. Here, we show total reported contacts.



3. Infectious disease dynamics inferred from genetic data

\w}

I L
Iy——|
/

P Py
Y Y
Jor——| )1

A flow diagram for HIV.

@ [ classes represent undiagnosed infections.

@ J}, classes represent diagnosed infections.

@ k£ =0,1,2 denotes early, chronic and AIDS stages.
@ Infection can come from within, or outside, the study population.
@ Genetic data give evidence on infectors as well as infectees.
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A simulated HIV epidemic

« (Smith et al., 2017)

Top: phylogeny of observed se-
uences.

Middle:  simulated sequence
data from a fitted model.

Bottom: Transmission forest
for the simulated epidemic.

red: undiagnosed early infection
blue: undiagnosed chronic infection
green: diagnosed



Innovations for general POMP models

@ New Monte Carlo optimization algorithms facilitate likelihood
maximization for large partially observed Markov process (POMP)
models: iterated filtering.

o lIterated filtering algorithms optimize the likelihood using a
sequence of random parameter perturbations, with decreasing
magnitude. Sequential Monte Carlo (SMC) provides a tool for
numerical solution to this nonlinear filtering problem.

o Existing variations on expectation-maximization (EM) and
Markov chain Monte Carlo (MCMC) do not scale well for these
problems.

o We are doing parametric inference. The main problem using
likelihood or Bayesian methods is computational. If existing
methods worked computationally, there would be no problem!

@ A new perspective on likelihood-based inference via Monte Carlo
profile likelihood.



Monte Carlo profile for genetic data on HIV dynamics
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@ ¢ models HIV transmitted by recently infected, diagnosed individuals.
@ The profile confidence interval is constructed by a cutoff that is
adjusted for the Monte Carlo variability (lonides et al., 2017).
o A proper 95% cutoff is 2.35. Without Monte Carlo error, it is 1.92.
e Each point took approximately 10 core days to compute.
o Alternative approaches struggle with Monte Carlo likelihood error of
order 100 log units.



Previous uses of SMC for phylodynamic inference

@ SMC techniques have previously been used for inferring phylogenies
(Bouchard-Coté et al., 2012), and for phylodynamic inference
conditional on a phylogeny (Rasmussen et al., 2011).

@ These approaches avoid the high-dimensional, computationally
challenging problem of joint inference.

@ Several innovations were necessary to realize computationally feasible
SMC on models and datasets of scientific interest.

o Dimension reduction: constructing the POMP model with genetic
sequences only in the measurement model to reduce the dimension of
the latent variables.

Algorithm parallelization.

Hierarchical sampling.

Just-in-time construction of state variables.

Restriction to a class of physical molecular clocks.

Maximization of the likelihood using iterated filtering.



The latent process for a GenPOMP

@ The latent Markov process, { X (t), t € T}, with T = [to, tend]
models the population dynamics and also includes any other processes
needed to describe the evolution of the pathogen.

e Suppose we can write X (t) = (7 (t), P(t), U(t)), where

e T (t) is the transmission forest,

e P(t) is the pathogen phylogeny equipped with a relaxed molecular
clock,

e U(t) represents the state of the pathogen and host populations.

o For example, U(t) may categorize each individual in the host
population into classes representing different stages of infection.
We suppose that {U(t),t € T} is itself a Markov process.

@ The plug-and-play property (Breté et al., 2009; He et al., 2010)

makes our methods applicable to any latent process for which a
simulator exists.



Simulating a GenPOMP from t; to i,

Latent state at time t; Latent state at time ¢o

T(t1)

troot

@ Black: transmission forest, 7(¢). Blue: pathogen phylogeny, P(t).



Annotations for the GenPOMP schematic diagram

@ The branching pattern of the pathogen phylogeny mirrors that of
T (t) over the interval [to,t1], so pathogen lineages are assumed to
branch exactly at transmission events. This simplifying assumption
can be changed.

@ Randomness in the rate of evolution—a relaxed molecular
clock—results in random edge lengths in P(t).

e At D, an active node splits in two when a transmission event occurs.

@ At (), an active node becomes a dead node () when an infected
host emigrates, recovers, or dies.

@ At (3, an immigration event gives rise to a new active node with its
own root.

e At @, a sequence node (e) is spawned when a sample is taken.



GenSMC: Sequential Monte Carlo for a GenPOMP

Particle 1

Particle 2

Particle 3

w3

1. Proposal. Simulate
particles forward from
time ¢; to time t. Then
select an individual to be
sequenced.

2. Weighting. Based on the
structure of the proposed trans-
mission forest, construct the
subtree of the phylogeny that
connects the observed sequences.
Use this subtree to compute
weight of the particle: the con-
ditional probability of the new
sequence.



Dimension reduction: A measurement model integrating

the sequence evolution model

@ We put the evolutionary process for the genetic sequences into the
measurement model.

@ Formally, let a measurement consist of an assignment of a new
sequence to an individual in the transmission tree.

@ The measurement density involves finding the likelihood of the new
sequence given the old sequences and the tree. This likelihood can be
computed efficiently by the peeling algorithm.

@ Particles representing the latent process do not have to include the
high-dimensional pathogen genome.



Restriction to a class of physical molecular clocks

@ A strict molecular clock models the rate of evolution as constant
through time and across lineages, assuming (i) sequence evolution is
Markovian; (ii) no simultaneous mutations.

@ These assumptions imply a Poisson-like mean-variance relationship
(Breté and lonides, 2011).

@ Overdispersion (known as a relaxed clock) has been shown to improve
the fit of phylogenetic models to observed genetic sequences in many
cases (Drummond et al., 2006).

@ In our approach, this corresponds to constructing each edge length of
P(t) as a stochastic process on the corresponding edge of 7 (t).

@ Various forms of such processes have been assumed in the literature,
but not all are self-consistent under Markovian assumptions.

@ For example, log normal clock perturbations lack an additivity
property: adding a node to split a branch must change the
evolutionary process along that branch.

@ We suppose the relaxed clock is a non-decreasing continuous-valued
Lévy process. In practice, we use a Gamma process clock.



A genPomp simulation study

Top: diagnosis data only. Bottom: including sequence data
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Detroit data: a young black MSM epidemic
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Moving forward from Smith et al (2017, MBE)

genPomp was demonstrated on simulation-based phylodynamic
likelihood inference for general dynamic models with order 100
sequences and order 1000 infected individuals.

Further work is needed to scale to larger systems.

We are working other applications within the current scale
constraints, including nosocomial disease transmission.

Having access to the full phylodynamic likelihood facilitates
investigations of what (if anything) is lost by 2-step methods and
summary statistic methods such as ABC.

Preliminary results: The Volz/Rasmussen likelihood approximation
works well if the true phylogeny is known. Phylogenetic uncertainty,
especially when the phylogeny is constructed under assumptions
different from the latent dynamic system, can lead to substantial bias
in estimates and confidence regions.



Strengths and limitations of the GenPOMP framework

Strengths:
@ A large and general model class for population dynamics.
o Statistically efficient inference.

@ Can be used to assess loss of information and biases in methods that
scale better.

Limitations:
@ Computational requirement.

@ Some detailed individual-based models may not fit easily into the
GenPOMP framework.



A brief introduction to iterated filtering

@ Successful SMC allows likelihood evaluation.

@ This likelihood evaluation is both costly and noisy for non-small
problems, so requires specialized algorithms to enable effective
inference.

@ The IF1 iterated filtering algorithm of (lonides et al., 2006) averaged
filtered parameters in a perturbed model, repeating with successively
smaller perturbations.

@ The IF2 algorithm of (lonides et al., 2015) simply feeds perturbed
particles at the end of one filtering iteration back as starting values
for the next iteration, with decreasing perturbations.

@ IF1 made possible some previously inaccessible inferences, but IF2 is
much better!



log likelihood for IF2
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log likelihood for IF1

@ Log likelihoods of the parameter vector output by IF1 and IF2, both

Comparison of IF1 and IF2
on the cholera model.

Algorithmic tuning parame-
ters for both IF1 and IF2
were set at the values cho-
sen by King et al (2008) for
IF1.

started at a uniform draw from a large 23-dimensional

hyper-rectangle.

@ Dotted lines show the maximum log likelihood.



Monte Carlo adjusted profile (MCAP) confidence intervals

@ The usual cutoff § = 1.92 for a 95% profile confidence interval is
based on an asymptotic quadratic log likelihood (Wilks' x? theorem).

@ Profile intervals are robust to reparameterization.

@ A Wilks limit also applies to give a cutoff for a smoothed Monte Carlo
profile based on a quadratic approximation (lonides et al., 2017),

OMCAP = Zi (CL X SE%HC + ;) ,
where z, is the 1 — /2 normal quantile, a is the quadratic coefficient
of a quadratic regression near the profile maximum, SE .. is the
Monte Carlo error of the maximum of this quadratic.

o if SE .. = 0, the cutoff for &« = 0.05 reduces to
Spcap = 1.962/2 = 1.92.

@ We apply this cutoff after estimating the profile via a locally weighted
quadratic smoother.

e We call this procedure a Monte Carlo adjusted profile (MCAP).



A toy: MCAP for a log normal model
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Points show Monte Carlo profile evaluations. Black dashed lines: exact
profile and 95% confidence interval. Solid red lines: MCAP confidence
interval. Dotted blue line: quadratic approximation.

Exact profile MCAP profile Bootstrap Quadratic
Coverage % 94.3 93.4 93.3 93.3
Mean width 0.78 0.88 0.94 0.92




Collaborators

Contributors to the methodologies developed:
@ Aaron King
@ Alex Smith
@ Carles Breto
e Joonha Park

o Dao Nguyen

Collaborators influencing our phylodynamic work:
o Jim Koopman
o Erik Volz

@ Ethan Romero-Severson
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