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Overview

1 Observational time series data on epidemiological systems.

2 Classical time series analysis: what it can do, and what it can’t.

3 How to fit mechanistic models to time series data.



Observing population-level dynamics

We’re interested in understanding epidemiological mechanisms:

Who gets infected by whom? How can we reduce disease transmission?

Mechanisms operate at the individual level, and can be studied at the
individual level.

For large, complex systems (such as human society) it is hard to use
knowledge about one scale (individual behavior) to understand
another scale (population behavior).

Example: macroeconomics should in principle be consistent with
microeconomics, but doing this is an open challenge.
We can study how humans and mosquitoes and malaria parasites
respond to temperature changes. What will be the consequences of
climate change for malaria prevalence?

Ultimately, public health is concerned with population-level outcomes.

Representative randomized controlled studies are occasionally
possible. Failing that, we can test our theories on observational
population-level data.



Basic questions: Is there a trend? Is there a change-point?

Sometimes we don’t ask the data to directly confirm whether it is
consistent with a mechanistic model. We just want to check whether
there is any trend or pattern that could possibly be interpretable.

Looking for statistical evidence for trends (and linear associations) is
a classical topic of time series analysis.

Case study: Malaria in the African highlands.

Hay et al (Nature, 2002) used time series analysis to argue that there
was no evidence for African highland malaria trends being driven by
temperature trends.
This finding was controversial, and turned out to be sensitive to the
particular choice of dataset and time period analyzed.
Siraj et al (Science, 2014) settled the controversy using spatially
resolved time series, showing how malaria prevalence changes with
altitude and temperature.



Limitations of classical time series analysis

Classical time series analysis extends standard regression analysis to
allow for correlated data.

These classical time series methods have been around for 50 years.

The usual statistical challenges remain: obtaining and understanding
the data, and applying the statistical methodology thoughtfully.

But, not all epidemiological questions one might want to address using
time series data are of this type...



A perspective from 2001

The following six issues identified by Bjørnstad and Grenfell (Science,
2001) are not solved by classical time series methodology. They require
consideration of nonlinear mechanistic models as statistical tools for
biological systems:

1 Combining measurement noise and process noise.

2 Including covariates in mechanistically plausible ways.

3 Continuous time models.

4 Modeling and estimating interactions in coupled systems.

5 Dealing with unobserved variables.

6 Modeling spatial-temporal dynamics.



Fast forward to 2014

Dobson (Science, 2014)

“Powerful new inferential fitting methods (Ionides, Bretó and King,
2006) considerably increase the accuracy of outbreak predictions
while also allowing models whose structure reflects different
underlying assumptions to be compared. These approaches move well
beyond time series and statistical regression analyses as they include
mechanistic details as mathematical functions that define rates of loss
of immunity and the response of vector abundance to climate.”



Fitting mechanistic models to data

Process noise is often important to get a good fit to the statistical
properties of data. For example, stochastic differential equation
models may be preferred to deterministic differential equations.

Simulation-based methods can evaluate and maximize the likelihood
for general partially observed stochastic dynamic models:

http://kingaa.github.io/sbied/

http://ionides.github.io/531w16/

This opens the possibility to use all the usual tools of likelihood-based
inference: likelihood ratio tests, AIC, profile likelihood confidence
intervals, Fisher information.

http://kingaa.github.io/sbied/
http://ionides.github.io/531w16/
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