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Four motivating data analysis challenges

1 Time series analysis: cholera in Bangladesh.

Fitting nonlinear dynamic models to a single long time series.

2 Panel data analysis: dynamic variation in sexual contact rates.

Observations on a collection of units lead to a panel of time series.
Analyzed together, the panel strengthens inferences available from any
one time series.

3 Genetic sequence data: HIV transmission within and between
demographic groups.

Genetic sequences of pathogens can inform transmission relationships
between infected hosts.

4 Spatiotemporal analysis: dengue in Rio de Janeiro.

Coupling between spatial locations leads to high-dimensional dynamics.



Commonalities between these four examples

All examples are partially observed Markov process (POMP) models.

A POMP model involves a latent dynamic process with the Markov
property: the future given the current state does not depend on the
past.

Only noisy and incomplete measurements are available on the latent
process.

Sequential Monte Carlo (SMC) algorithms provide a widely applicable
approach for low-dimensional systems.

Extensions to SMC are required for higher dimensional systems.



Monthly cholera deaths in Dhaka, Bangladesh, 1891-1940
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LETTERS

Inapparent infections and cholera dynamics
Aaron A. King1,2, Edward L. Ionides3, Mercedes Pascual1,4 & Menno J. Bouma5

In many infectious diseases, an unknown fraction of infections
produce symptoms mild enough to go unrecorded, a fact that
can seriously compromise the interpretation of epidemiological
records. This is true for cholera, a pandemic bacterial disease,
where estimates of the ratio of asymptomatic to symptomatic
infections have ranged from 3 to 100 (refs 1–5). In the absence
of direct evidence, understanding of fundamental aspects of chol-
era transmission, immunology and control has been based on
assumptions about this ratio and about the immunological con-
sequences of inapparent infections. Here we show that a model
incorporating high asymptomatic ratio and rapidly waning
immunity, with infection both from human and environmental
sources, explains 50 yr of mortality data from 26 districts of
Bengal, the pathogen’s endemic home. We find that the asympto-
matic ratio in cholera is far higher than had been previously sup-
posed and that the immunity derived from mild infections wanes
much more rapidly than earlier analyses have indicated. We find,
too, that the environmental reservoir5,6 (free-living pathogen) is
directly responsible for relatively few infections but that it may be
critical to the disease’s endemicity. Our results demonstrate that
inapparent infections can hold the key to interpreting the patterns
of disease outbreaks. New statistical methods7, which allow rig-
orous maximum likelihood inference based on dynamical models
incorporating multiple sources and outcomes of infection, season-
ality, process noise, hidden variables and measurement error,
make it possible to test more precise hypotheses and obtain unex-
pected results. Our experience suggests that the confrontation of
time-series data with mechanistic models is likely to revise our
understanding of the ecology of many infectious diseases.

Cholera is a diarrhoeal disease caused by enteric infection with the
bacterium Vibrio cholerae. Six of the seven cholera pandemics that
have swept the globe since 1817 originated in the low-lying, densely
populated regions north of the Bay of Bengal, where the disease is
endemic. Although much attention has been focused on cholera1,8,
unsolved puzzles remain about its mode of transmission and the role
of host immunity in its dynamics. This is largely because, in regions
where cholera is endemic, most cholera cases are mild or asympto-
matic but the true extent of asymptomatic infection has been difficult
to assess. Estimates of the ratio of asymptomatic to symptomatic
cases vary greatly, and the importance of inapparent infections in
the dynamics of cholera outbreaks is unknown. To determine what
role is played by inapparent infections, we used an approach that
allows indirect inference about unobserved variables.

A remarkably rich data set on the pattern of cholera epidemics
exists in the form of mortality records kept by the sanitary commis-
sioners of the former British East Indian province of Bengal9. The
data consist of monthly cholera death counts in each of 26 districts
over the period 1891–1940 (Supplementary Fig. 1). To analyse these
data, we formulated a series of models incorporating known
or hypothesized mechanisms of transmission and immunity. A

parsimonious model for cholera dynamics is of susceptible–
infectious–recovered–susceptible (SIRS) form (Fig. 1a). A novel fea-
ture of this model is that it incorporates both transmission tied to
human prevalence (using a traditional mass-action term) and trans-
mission from an environmental reservoir (where the pathogen is
commonly living in aquatic environments)5,6,10–12. This model is a
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Figure 1 | The mechanistic models used. a, SIRS model; b, two-path model;
c, environmental-phage model. Births, related to the total population size H,
are assumed to feed the pool of susceptibles, S. Individuals are susceptible to
infection when born. Exposure to the pathogen occurs at time-dependent
rate l(t). c is the probability that an exposure leads to a contagious infection
(class I). Note that when c 5 1 and r 5 ‘, the two-path model (b) reduces to
the SIRS model (a); when c , 1, some exposures result in short-term
immunity (class Y). Infected individuals die at an excess rate m and recover
at a rate c; the time an individual spends within the I class is exponentially
distributed. We assume that an individual remains immune to reinfection
for a duration gamma-distributed with mean 1/e and variance 1/ke2. Once
immunity has waned, an individual re-enters the susceptible pool (S). The
measured variable is monthly deaths, M. The mean duration of short-term
immunity is 1/r. Individuals in each class are subject to constant
background mortality at rate 0.02 yr21. The force of infection, l(t), includes
terms for environmental and human sources of infection and is assumed to
vary seasonally. Because the seasonality of cholera dynamics in Bengal is
complex, we used a semi-mechanistic approach: transmission was modelled
by a flexible periodic function of time. In the environmental-phage model
(c), as infected hosts shed pathogen, phage W builds up in the environment
and reduces transmissibility. The equations specifying these models are
given in the Supplementary Equations.
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Competing POMP
models
(King et al., 2008)

S Susceptible
I Infected
Rj Recovered
M Mortality
H Population size
Y Asymptomatics in b
Φ Phage in c
λ force of infection
γ recovery rate
ε loss of immunity
m cholera mortality



2. Panel data on sexual contacts

Mathematical models of HIV transmission struggle to explain
observed incidence due to the low measured probability of
transmission per sexual contact.

The anomaly can be resolved by models that include individual-level
variability in sexual behavior over time.

Romero-Severson et al. (2015) constructed behavioral models with
various heterogeneities, both between individuals and within
individuals over time. These models were fitted to behavioral panel
data.

Collections of POMP models with some shared parameters, but no
dynamic interactions, are called PanelPOMP models.



Total sexual contacts in 6 month intervals

iterated filtering (22) implemented in pomp, version 0.43-4
(29), running in R2.15.3 (30). Iterated filtering is a Monte
Carlo algorithm which computes the maximum likelihood
estimate for partially observed Markov process models. Fil-
tering is the numerical computation of estimating unobserved
states and evaluating the likelihood function for a partial-
ly observed Markov process. Iterated filtering carries out
multiple filtering operations using a sequential Monte Carlo
filter, with perturbations in the unknown model parameters
designed so that successive filtering operations converge

toward the maximum likelihood estimate. The sequential
Monte Carlo method is a flexible nonlinear non-Gaussian fil-
tering method, also known as the particle filter (31), in which
the unknown distribution of the latent dynamic variables is
represented by a Monte Carlo sample from this distribution
(known as a swarm of particles). Successive iterations of
the filtering process make successively smaller perturbations
to the parameters, with the heuristic that the optimization pro-
cess is cooling toward a freezing point which is theoretically
guaranteed to be a local maximum of the likelihood function
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Figure 1. Features of a set of longitudinal data on rates of sexual contact among human immunodeficiency virus (HIV)-negative gay men in the
United States, Centers for Disease Control and Prevention Collaborative HIV Seroincidence Study (1992–1995). A) Secular trend from the time of
enrollment in the cohort; B) average rate of sexual contact per month; C) rates of sexual contact over time; D) bias-corrected autocorrelation (Web
Appendix 1). Black bars show autocorrelation >0, while gray bars show autocorrelation ≤0. The mean (0.076) and standard error (0.0094) of the
autocorrelation imply a small but positive autocorrelation (95% confidence interval: 0.057, 0.094).
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Time series for 15 units from a panel of 882 gay men who completed
a 2 year longitudinal study.
Sexual contacts were reported in various categories: oral, anal,
protected, unprotected, etc. Here, we show total reported contacts.



3. Infectious disease dynamics inferred from genetic dataSmith et al. · doi:10.NNNN/molbev/mst1 MBE
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FIG. 2. A flow diagram showing the possible classes for infected individuals. The columns represent stage of disease: with

subscripts 0, 1 and 2 representing early, chronic, and AIDS stages respectively. The rows represent diagnosis status, with

the top row representing undiagnosed individuals, Ik, and the bottom row representing diagnosed individuals, Jk, where

k∈{0,1,2}. ρk are per capita rates of diagnosis and γc are rates of disease progression. Arrows out of classes that do not

flow into other classes represent the combined flow out of the infected population due to death and emigration.

to the intensive nature of the computations, further developments will be required to handle considerably

larger datasets. Some empirical results concerning how our GenSMC implementation scales with number

of sequences are given in the supplement (Section S2.3). We discuss applicability to the range of current

phylodynamic challenges in the discussion section.

A study on simulated data

Using the individual-based, stochastic model of HIV described above (Fig. 2), we simulated epidemics

conditional on observing 30 sequences. We set the length of the simulated sequences to be 100 bases. We

set parameters governing the rate of evolution at relatively high values to generate a high proportion of

variable sites. As computation scales with the number of variable sites, the computational effort in this

simulation study could be comparable to fitting real sequences of greater length. Parameters values and

their interpretations are specified in Tables 1 and 2. Algorithmic parameters are specified in Section S4.2.

Each simulated epidemic consisted of a transmission forest and a set of pathogen genetic sequences. We

randomly selected 5 epidemics to fit. Each dataset consists of two types of data: times of diagnoses and

pathogen genetic sequences. A representative simulated transmission forest and its associated pathogen

genetic sequences are shown in Fig. 3.

For each of the selected epidemics we ask two questions. First, when all other parameters are known,

is it possible to infer εI0
and εI1

using only diagnosis times? Second, how does inference change when

we supplement the diagnosis data with pathogen genetic sequences? To perform this comparison we

estimated two likelihood surfaces for each epidemic: one using only the diagnosis likelihood, and one

using both the diagnosis likelihood and the genetic likelihood. We estimated each surface by using the

particle filter to compute a grid of likelihood estimates with respect to the two parameters of interest:

10

A flow diagram for HIV.

Ik classes represent undiagnosed infections.

Jk classes represent diagnosed infections.

k = 0, 1, 2 denotes early, chronic and AIDS stages.

Infection can come from within, or outside, the study population.

Genetic data give evidence on infectors as well as infectees.
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Top: phylogeny of observed se-
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Middle: simulated sequence
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Bottom: Transmission forest
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Measles in 20 UK cities, 1944–1965

Leeds Manchester Liverpool Birmingham London

Bradford Hull Nottingham Bristol Sheffield

Northwich Bedwellty Consett Hastings Cardiff

Halesworth Lees Mold Dalton.in.Furness Oswestry
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A few cities are above a critical community size for sustaining measles.

What is the effective transmission network between cities?



A SpatPOMP for measles

S1 -
µSE,1(t)ξ1(t)

E1
-

µEI
I1 -

µIR
R1

S2 -µSE,2(t)ξ2(t)
E2

-µEI
I2 -µIR

R2

SU -
µSE,U (t)ξU (t)

EU -
µEI

IU -
µIR

RU

A SpatPOMP is a POMP model with a collection of coupled units.

Here, units are cities, u = 1, . . . , U

Coupling arises because µSE,u(t) depends on I1, . . . , IU

Data are weekly reported case counts in each city.

Modeled using coupled over-dispersed Markov chains.



Innovations for general POMP models

New Monte Carlo optimization algorithms facilitate likelihood
maximization for large partially observed Markov process (POMP)
models: iterated filtering.

Iterated filtering algorithms optimize the likelihood using a
sequence of random parameter perturbations, with decreasing
magnitude. Sequential Monte Carlo (SMC) provides a tool for
numerical solution to this nonlinear filtering problem.
Existing variations on expectation-maximization (EM) and
Markov chain Monte Carlo (MCMC) do not scale well for these
problems.
We are doing parametric inference. The main problem using
likelihood or Bayesian methods is computational. If existing
methods worked computationally, there would be no problem!

A new perspective on likelihood-based inference via Monte Carlo
profile likelihood.



Monte Carlo profile for genetic data on HIV dynamics
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Figure 2: Profile likelihood for an infectious disease transmission parameter inferred from
genetic data on pathogens. The smoothed profile likelihood and corresponding MCAP 95%
confidence interval are shown as solid red lines. The quadratic approximation in a neighbor-
hood of the maximum is shown as a blue dotted line.

the capabilities of our methodology, we present three high-dimensional POMP inference chal-
lenges that become computationally tractable using MCAP.

4.1 Inferring population dynamics from genetic sequence data

Genetic sequence data on a sample of individuals in an ecological system has potential to
reveal population dynamics. Extraction of this information has been termed phylodynamics
(Grenfell et al., 2004). Likelihood-based inference for joint models of the molecular evolu-
tion process, population dynamics, and measurement process is a challenging computational
problem. The bulk of extant phylodynamic methodology has therefore focused on inference
for population dynamics conditional on an estimated phylogeny and replacing the popula-
tion dynamic model with an approximation, called a coalescent model that is convenient for
calculations backwards in time (Karcher et al., 2016). Working with the full joint likelihood
is not entirely beyond modern computational capabilities; in particular it can be done using
the genPomp algorithm of Smith et al. (2016). The genPomp algorithm is an application
of iterated filtering methodology (Ionides et al., 2015) to phylodynamic models and data.
To the best of our knowledge, genPomp is the first algorithm capable of carrying out full
joint likelihood-based inference for population-level phylodynamic inference. However, the
genPomp algorithm leads to estimators with high Monte Carlo variance, indeed, too high for
reasonable amounts of computation resources to reduce Monte Carlo variability to negligi-
bility. This, therefore, provides a useful scenario to demonstrate our methodology.

Figure 2 presents a Monte Carlo profile computed by Smith et al. (2016), with confidence

10

φ models HIV transmitted by recently infected, diagnosed individuals.
The profile confidence interval is constructed by a cutoff that is
adjusted for the Monte Carlo variability (Ionides et al., 2017).

A proper 95% cutoff is 2.35. Without Monte Carlo error, it is 1.92.
Each point took approximately 10 core days to compute.
Alternative approaches struggle with Monte Carlo likelihood error of
order 100 log units.



Previous uses of SMC for phylodynamic inference

SMC techniques have previously been used for inferring phylogenies
(Bouchard-Côté et al., 2012), and for phylodynamic inference
conditional on a phylogeny (Rasmussen et al., 2011).

These approaches avoid the high-dimensional, computationally
challenging problem of joint inference.

Several innovations were necessary to realize computationally feasible
SMC on models and datasets of scientific interest.

Dimension reduction: constructing the POMP model with genetic
sequences only in the measurement model to reduce the dimension of
the latent variables.
Algorithm parallelization.
Hierarchical sampling.
Just-in-time construction of state variables.
Restriction to a class of physical molecular clocks.
Maximization of the likelihood using iterated filtering.



The latent process for a GenPOMP

The latent Markov process, {X(t), t ∈ T}, with T = [t0, tend],
models the population dynamics and also includes any other processes
needed to describe the evolution of the pathogen.

Suppose we can write X(t) =
(
T (t), P(t), U(t)

)
, where

T (t) is the transmission forest,
P(t) is the pathogen phylogeny equipped with a relaxed molecular
clock,
U(t) represents the state of the pathogen and host populations.

For example, U(t) may categorize each individual in the host
population into classes representing different stages of infection.

We suppose that {U(t), t ∈ T} is itself a Markov process.

The plug-and-play property (Bretó et al., 2009; He et al., 2010)
makes our methods applicable to any latent process for which a
simulator exists.



Simulating a GenPOMP from t1 to t2

troot

t0 t1

T (t1)

Latent state at time t1

P(t1)

troot

t0 t1 t2

T (t2)

Latent state at time t2

4

3

2

1

P(t2)

Black: transmission forest, T (t). Blue: pathogen phylogeny, P(t).



Annotations for the GenPOMP schematic diagram

The branching pattern of the pathogen phylogeny mirrors that of
T (t) over the interval [t0, t1], so pathogen lineages are assumed to
branch exactly at transmission events. This simplifying assumption
can be changed.

Randomness in the rate of evolution—a relaxed molecular
clock—results in random edge lengths in P(t).

At 1© , an active node splits in two when a transmission event occurs.

At 2© , an active node becomes a dead node (×) when an infected
host emigrates, recovers, or dies.

At 3© , an immigration event gives rise to a new active node with its
own root.

At 4© , a sequence node (•) is spawned when a sample is taken.



GenSMC: Sequential Monte Carlo for a GenPOMP
Particle 1 Particle 2 Particle 3

troot t0 t1 troot t0 t1 troot t0 t1

t1 t2 t1 t2 t1 t2

1. Proposal. Simulate
particles forward from
time t1 to time t2. Then
select an individual to be
sequenced.

w1 w2 w3

P
2. Weighting. Based on the
structure of the proposed trans-
mission forest, construct the
subtree of the phylogeny that
connects the observed sequences.
Use this subtree to compute
weight of the particle: the con-
ditional probability of the new
sequence.

3. Resampling. Resample
particles with probability
proportional to their weights.

Figure: A schematic of the particle filter. Here, we show steps to run the filter
from the first sequence to the second. Transmission forests are shown in black
and phylogenies that connect observed sequences, P̃(t), are shown in blue.
Observed sequences are depicted as blue dots. This schematic shows how the
algorithm uses just-in-time construction of state variables to ease computational
costs. Although the model describes how P(t) relates to T (t) across all branches
of the transmission tree, the algorithm only constructs the subtree of the
phylogeny needed to connect the observations (and therefore evaluate conditional
probabilities of sequences). Note that in our implementation of the particle filter
we introduce additional procedures in the proposal and weighting steps. These
procedures, which are detailed below, allow for more accurate assessment of a
particle’s weight (through hierarchical sampling) and estimation of the conditional
probability of a sequence under a relaxed clock. In our current implementation
(Algorithm ??), assimilation of each data point is followed by systematic
resampling (Arulampalam et al., 2002; Douc et al., 2005); future developments
may aim to increase efficiency further using alternative resampling schemes.



Dimension reduction: A measurement model integrating
the sequence evolution model

We put the evolutionary process for the genetic sequences into the
measurement model.

Formally, let a measurement consist of an assignment of a new
sequence to an individual in the transmission tree.

The measurement density involves finding the likelihood of the new
sequence given the old sequences and the tree. This likelihood can be
computed efficiently by the peeling algorithm.

Particles representing the latent process do not have to include the
high-dimensional pathogen genome.



Restriction to a class of physical molecular clocks

A strict molecular clock models the rate of evolution as constant
through time and across lineages, assuming (i) sequence evolution is
Markovian; (ii) no simultaneous mutations.
These assumptions imply a Poisson-like mean-variance relationship
(Bretó and Ionides, 2011).
Overdispersion (known as a relaxed clock) has been shown to improve
the fit of phylogenetic models to observed genetic sequences in many
cases (Drummond et al., 2006).
In our approach, this corresponds to constructing each edge length of
P(t) as a stochastic process on the corresponding edge of T (t).
Various forms of such processes have been assumed in the literature,
but not all are self-consistent under Markovian assumptions.
For example, log normal clock perturbations lack an additivity
property: adding a node to split a branch must change the
evolutionary process along that branch.
We suppose the relaxed clock is a non-decreasing continuous-valued
Lévy process. In practice, we use a Gamma process clock.



A genPomp simulation study

Top: diagnosis data only. Bottom: including sequence data
genpomp · doi:10.NNNN/molbev/mst1 MBE
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FIG. 4. Grid-based estimates of likelihood surfaces and likelihood profiles from fitting to simulated data. The top row

shows the surface (A) and profiles (B and C) estimated using only the diagnosis likelihood. The bottom row shows the

surface (D) and profiles (E and F) estimated using both the diagnosis and the genetic likelihood. Red dots and red lines

indicate true values of εI0 and εI1 used in simulation. Point estimates and 95% confidence intervals are shown in green

just above the horizontal axis of the likelihood profile plots. Confidence intervals for E and F account for both statistical

uncertainty and Monte Carlo noise (Ionides et al., 2016) using a square root transformation appropriate for non-negative

parameters. Augmenting the diagnosis data with genetic data yields smaller confidence intervals for εI0 and εI1 , and resolves

the nonidentifiability of these parameters when estimated using only the diagnoses. Note that scales of the likelihood surfaces

shown in A and D are not the same; E and F have the same scale as B and C but with a vertical shift.
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Detroit data: a young black MSM epidemic
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FIG. 5. The distribution of age at diagnosis through time for black MSM in Detroit, MI. The cohort that we selected for

analysis is outlined in red. We excluded the data from 2012 to limit effects from delays in updating the MDCH database.

29 individuals that were diagnosed at ages greater than or equal to 60 years are not shown on this plot.
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Detroit data: a young black MSM epidemic
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dots represent particle filter likelihood evaluations of parameter sets obtained using iterated filtering. Red dots represent

mean log likelihoods of the multiple likelihood evaluations (black dots) at each point in the profile. Red lines are loess fits

to the red dots. Green bars along the lower margin of each panel encompass 95% confidence intervals for each parameter.

Confidence intervals account for both statistical uncertainty and Monte Carlo noise (Ionides et al., 2016). The smoothed

profile was calculated on the square root scale, appropriate for non-negative parameters, with a green dot indicating the

maximum.
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Moving forward from Smith et al (2017, MBE)

genPomp was demonstrated on simulation-based phylodynamic
likelihood inference for general dynamic models with order 100
sequences and order 1000 infected individuals.

Further work is needed to scale to larger systems.

Having access to the full phylodynamic likelihood facilitates
investigations of what (if anything) is lost by 2-step methods and
summary statistic methods such as ABC.

Preliminary results: The Volz/Rasmussen likelihood approximation
works well if the true phylogeny is known. Phylogenetic uncertainty,
especially when the phylogeny is constructed under assumptions
different from the latent dynamic system, can lead to substantial bias
in estimates and confidence regions.



Strengths and limitations of the GenPOMP framework

Strengths:

A large and general model class for population dynamics.

Statistically efficient inference.

Can be used to assess loss of information and biases in methods that
scale better.

Limitations:

Computational requirement.

Some detailed individual-based models may not fit easily into the
GenPOMP framework.



A brief introduction to iterated filtering

Successful SMC allows likelihood evaluation.

This likelihood evaluation is both costly and noisy for non-small
problems, so requires specialized algorithms to enable effective
inference.

The IF1 iterated filtering algorithm of (Ionides et al., 2006) averaged
filtered parameters in a perturbed model, repeating with successively
smaller perturbations.

The IF2 algorithm of (Ionides et al., 2015) simply feeds perturbed
particles at the end of one filtering iteration back as starting values
for the next iteration, with decreasing perturbations.

IF1 made possible some previously inaccessible inferences, but IF2 is
much better!



Comparison of IF1 and IF2
on the cholera model.

Algorithmic tuning parame-
ters for both IF1 and IF2
were set at the values cho-
sen by King et al (2008) for
IF1.

Log likelihoods of the parameter vector output by IF1 and IF2, both
started at a uniform draw from a large 23-dimensional
hyper-rectangle.

Dotted lines show the maximum log likelihood.



Monte Carlo adjusted profile (MCAP) confidence intervals

The usual cutoff δ = 1.92 for a 95% profile confidence interval is
based on an asymptotic quadratic log likelihood (Wilks’ χ2 theorem).

Profile intervals are robust to reparameterization.

A Wilks limit also applies to give a cutoff for a smoothed Monte Carlo
profile based on a quadratic approximation (Ionides et al., 2017),

δMCAP = z2α

(
a× SE2

mc +
1

2

)
,

where zα is the 1− α/2 normal quantile, a is the quadratic coefficient
of a quadratic regression near the profile maximum, SEmc is the
Monte Carlo error of the maximum of this quadratic.

if SEmc = 0, the cutoff for α = 0.05 reduces to
δMCAP = 1.962/2 = 1.92.

We apply this cutoff after estimating the profile via a locally weighted
quadratic smoother.

We call this procedure a Monte Carlo adjusted profile (MCAP).



A toy: MCAP for a log normal model
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interval. Dotted blue line: quadratic approximation.

Exact profile MCAP profile Bootstrap Quadratic

Coverage % 94.3 93.4 93.3 93.3
Mean width 0.78 0.88 0.94 0.92



Software

pomp. An R package developed and maintained for 12yr (King et al.,
2016). Various tutorials, courses and open-source examples exist.

https://kingaa.github.io/sbied/

https://ionides.github.io/531w18/

panelPomp. An R package extending pomp for PanelPOMP models
(Bretó et al., 2019)

genPomp. A C++ program written for (Smith et al., 2017)

spatPomp. An R package extending pomp for SpatPOMP models. A
preliminary version will be released soon.

https://kingaa.github.io/sbied/
https://ionides.github.io/531w18/
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Douc, R., Cappé, O., and Moulines, E. (2005). Comparison of resampling
schemes for particle filtering. In Proceedings of the 4th International
Symposium on Image and Signal Processing and Analysis, 2005, pages
64–69. IEEE.

Drummond, A. J., Ho, S. Y. W., Phillips, M. J., and Rambaut, A. (2006).
Relaxed phylogenetics and dating with confidence. PLoS Biology,
4(5):e88.

He, D., Ionides, E. L., and King, A. A. (2010). Plug-and-play inference for
disease dynamics: Measles in large and small towns as a case study.
Journal of the Royal Society Interface, 7:271–283.
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