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Methodological challenge:

A general approach to answering (and therefore asking) ques-

tions formulated as hypotheses about partially observed non-

linear stochastic dynamic systems.

• Partially observed: some variables unmeasured, others measured with

error.

• Stochastic dynamic systems: random processes in discrete or

continuous time, with discrete or continuous populations.

• Such situations arise throughout ecology and epidemiology. Maybe a

characteristic feature of disease dynamics is that continuous time

models are often appropriate.
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Practical issue:

To develop approaches which are accessible to a wider commu-

nity. Formal statistical inference via mechanistically-motivated

models should aspire to be accessible to all those with a quanti-

tative interest in disease dynamics.

• Plug and play inference methods are those which require only code to

simulate from the dynamic system—and specifically do not require

analytic expressions for transition probabilities (Bretó et al., 2008;

Ionides et al., 2006).

• pomp: an R package for statistical analysis via partially observed

Markov processes (King et al., 2007).
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An issue of model complexity: Over-dispersion

• Adding arbitrary model complexity to an individual-based model (with

only demographic stochasticity) ALWAYS gives a model for which the

variance of the process increments equals the mean, over short time

intervals (Bretó et al., 2008). We call this equidispersion.

• over-dispersion can be specified by one parameter: the intensity of

stochastic variation in the force of infection (Bretó et al., 2008).

• Is it important to include over-dispersion in a dynamic model, to the

extent that it is present in data? In generalized linear models (Poisson,

binomial and negative binomial regression) it is widely recognized that

(a) over-dispersion is common; (b) failure to allow for it can lead to

highly misleading conclusions (McCullagh and Nelder, 1989).
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Over-dispersion in disease dynamics

• Goodness of fit:

– A model can capture the dynamics of a disease system well, and

yet drastically fail to fit the data in a statistical sense.

– Models which fit are necessary to make statistically correct

forecasts, and help when making model-based inferences.

• Example: Susceptible–Exposed–Infected–Recovered (SEIR) models

for measles.



Ed Ionides Time series analysis of infectious disease dynamics 7

(Reproduced from Grenfell et al., 2002)
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Three SEIR data analyses for measles

• Bjørnstad et al. (2002) studied a discrete-time SIR model via

susceptible reconstruction and log-linear regression.

• Cauchemez and Ferguson (2008) studied a continuous-time SIR

model, based on demographic stochasticity, reconstructing the

unobserved variables via Monte Carlo Markov chain methods.

• Bretó et al. (2008) and He et al. (2008, in preparation) studied a

continuous time SEIR model with demographic and environmental

stochasticity, reconstructing unobserved variables via Sequential

Monte Carlo (leading to a plug-and-play inference procedure).
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Over-dispersion in Bjørnstad et al. (2002)

• The model has negative binomial transition probabilities,

corresponding to demographic stochasticity in continuous time.

• Parameters are estimated via log-linear least squares.

• Exactly the same log-linear least squares method could be used to

estimate parameters for an over-dispersed negative binomial model.

So the model fitting approach itself does not depend on the restriction

to demographic stochasticity.

• Simulations from the fitted model (with demographic stochasticity

alone) have some impressive similarities with data.
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Over-dispersion in Cauchemez and Ferguson (2008)

• This Monte Carlo Markov chain approach, unlike Bjørnstad et al.

(2002), makes explicit use of demographic stochasticity in the

estimation procedure.

• That may explain the very low log likelihood of -7011 obtained for

biweekly cases in London 1948–1964; compare with -2505 obtained

for the same data by Bretó et al. (2008).

• Nevertheless, Cauchemez and Ferguson (2008) showed impressive

simulation results for their fitted model. Does it even matter that the

model does not fit well (as measured by likelihood) when it clearly

captures the key dynamic features?
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Over-dispersion in He et al. (2008)

• Profile likelihood for environmental stochasticity σSE and effect on

estimated latent and infectious periods (London, 1950–1964).

• Variability of≈ 5% per year substantially improves the fit, and has

consequences for parameter estimates.
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Interpretation of over-dispersion

• Social and environmental events (e.g., football matches, weather) lead

to stochastic variation in rates: environmental stochasticity.

• Perhaps over-dispersion gives a way to measure non-homogeneous

mixing.

– Non-homogeneous mixing undoubtedly occurs.

– It does not appear to be well-modeled by the tradition exponents

(α) which have been repeatedly found to be close to one in data

analyses (Bjørnstad et al., 2002; He et al., 2008).

• A catch-all for other model mis-specification? It is common practice in

linear regression to bear in mind that the “error” terms contain

un-modeled processes as well as truly stochastic effects. This

reasoning can be applied to dynamic models as well.
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Beyond time series analysis

• Time series techniques are a launching pad for analysis of dynamic

processes with more complex structures:

– spatio-temporal.

– dynamic trees and networks.

– multiple related time series (i.e., longitudinal analysis with many

observations on each subject).
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Thank you!

These slides are available at

www.stat.lsa.umich.edu/∼ionides/pubs/rapidd08.pdf
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