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Questions to be addressed

1 When can we carry out full-information likelihood-based inference on
a general class of spatiotemporal partially observed Markov process
models? (Of particular interest are metapopulation models.)

2 Is there an intersection between scientific problems of interest and the
capabilities of the spatPomp R package?

3 We introduce the iterated block particle filter because it is
currently the most powerful algorithm available in spatPomp.

4 Bonus question: How do we know if our model is statistically
adequate, or needs more work?
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Inference challenges in population dynamics

1 Combining measurement noise and process noise.

2 Including covariates in mechanistically plausible ways.

3 Continuous time models.

4 Modeling and estimating interactions in coupled systems.

5 Dealing with unobserved variables.

6 Modeling spatiotemporal dynamics.

7 Studying population dynamics via genetic sequence data.

1–5 are largely solved, from a methodological perspective.
6 is our immediate topic.
7 is exciting but not the focus of this talk.

Reviews: Bjornstad & Grenfell (Science, 2001); Grenfell et al (Science, 2004)
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Pre-vaccination weekly measles in England & Wales
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Time series data, panel data & spatiotemporal data

Looking at one unit (town) is time series analysis.

Joint modeling of a few units (say, 2 or 3) is multivariate time
series analysis.

Analysis of many time series, without consideration of dynamic
interactions, is panel data analysis.

Allowing for coupling between units, we get spatiotemporal
analysis, which in our context is metapopulation analysis.

5



Desiderata

Consideration of arbitrary dynamic models. The limitations should be
our scientific creativity and the information in the data.

Hence, plug-and-play methods which need a simulator from the
model but not nice closed-form expressions for densities.

Statistically efficient inference, to extract all the information in the
data.

Hence, likelihood-based methods.
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Fitting mechanistic models to time series

Iiterated particle filtering via mif2 in the R package pomp enables
Masters-level statisticians to do plug-and-play likelihood-based
inference:

https://ionides.github.io/531w22/

The science may be hard, but the statistics is becoming routine.
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Fitting mechanistic models to panel data

To investigate epidemiological dynamics in multiple cities, one can
consider each city independently, perhaps modeling a background
immigration rate of infections for each city.

Decoupling leads to panel data analysis, by assumption.

Iterated filtering methods extend to panel data (panelPomp, Breto et
al, JASA, 2019).

We must decide which parameters should be modeled as shared (i.e.,
the same for each unit) vs unit-specific.
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The curse of dimensionality

Particle filter (PF) methods fail for high-dimensional systems. They
scale exponentially badly.

Algorithms with improved scalability include:

Bagged filters (BF, IBF)
Ensemble Kalman filter (EnKF, IEnKF)
Guided intermediate resampling filter (GIRF, IGIRF)
Block particle filter (BPF, IBPF)

Filters estimate latent states and evaluate the likelihood.

Iterated filters estimate parameters using stochastic parameter
perturbations.

These algorithms are all implemented in the spatPomp R package.
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Filtering U units of a coupled measles SEIR model
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Simulated data using a gravity model with geography, demography and
transmssion parameters corresponding to UK pre-vaccination measles
(Ionides et al, JASA, 2021).
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U = 40 units for a coupled measles SEIR model

1950 1952 1954 1956 1958 1960 1962 1964

10
20

30
40

un
it

0

2

4

6

8

A

1950 1952 1954 1956 1958 1960 1962 1964

10
20

30
40

un
it

0

2

4

6

8
B

time

A. Simulated Susceptible-Exposed-Infected-Recovered dynamics coupled
with a gravity model (log of biweekly reported cases).
B. Measles UK pre-vaccination case reports for the 40 largest cities.
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Parameters for the measles model

Seasonal transmission: mean and amplitude, using school term for
contact rate.

Durations of latency and infectious period.

Initial values: fraction susceptible, latent and infectious.

Cohort effect: all births in an age cohort start school in September.

Inhomogenous mixing exponent, Iα.

Measurement fraction.

Population movement model: gravity constant.

Dynamic noise: process overdispersion.

Measurement overdispersion.

(Adding gravity coupling to the model of He et al, JRSI, 2010)
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More on the block particle filter (BPF)

BPF worked quickly, easily and reliably on our measles model filtering
experiments.

BPF has theoretical support in some situations (Rebeschini & Van
Handel, Annals of Applied Probability, 2015).

This motivated us to develop an IBPF for parameter estimation.

IBPF has theoretical guarantees similar to BPF (Ning & Ionides,
JMLR, 2023).

BPF was independently proposed as the “factored particle filter” by
Ng et al (2002).

13



Particle filter (PF)

Evolutionary analogy

Mutation
↓

Fitness
↓

Natural selection

Particle filter algorithm

Predict: stochastic dynamics
↓

Measurement: weight
↓

Filter: resample

• PF is an evolutionary algorithm with good mathematical properties: an
unbiased likelihood estimate and consistent latent state distribution.
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Block particle filter (BPF)

• Blocks are a partition of the metapopulation units.

• For measles, we use each city as a block.

Evolutionary analogy

Mutation
↓

Fitness
for each chromosome

↓
Natural selection

for each chromosome
↓

Recombine chromosomes

Block particle filter

Predict: stochastic dynamics
↓

Measurement: weight
for each block

↓
Filter: resample
for each block

↓
Recombine blocks

• Blocks are segments of the full state which can be reassorted between
particles at the resampling step.

15



Measles likelihood slices for coupling parameter, G
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Simulating 15 year of data from
U = 40 cities. Slice likelihood, varying
G with other parameters fixed.
(Ionides et al, JASA, 2021).

A. Evaluation using adapted bagged
filter (ABF).

B. Evaluation using block particle
filter (BPF).

C. Evaluation using EnKF.

A much easier task than computing a
profile likelihood for real data.
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Comments on the Ensemble Kalman Filter (EnKF)

EnKF is more dependent on approximate Gaussianity than is
sometimes supposed.

The Gaussian-inspired update rule is similar to the extended Kalman
filter (EKF), which has largely been superseded by particle filter
methods for low-dimensional nonlinear biological dynamics.

Simple systems can defeat EnKF: the linear Gaussian update is
helpless when data inform the conditional variance rather than the
conditional mean.

Big systems need computationally tractable analysis. EnKF may
sometimes be the best solution available, but be aware of its
limitations.
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Scalability needed for practical inference

Large numbers of parameters

Initial conditions will typically have to be estimated for each unit.

Various dynamic parameters and measurement parameters (e.g.,
reporting rate) may also need to be unit-specific to obtain a statistical
fit to the data.

Working with hundreds of estimated parameters raises additional
challenges on top of the high-dimensional coupled dynamics.

A moderate numbers of spatial units is enough to open new possibilities.

As soon as dimension exceeds capabilities of a particle filter (say,
U = 5) we are in situations where likelihood-based inference for
general models has been inaccessible.

5-500 coupled units is our target problem size.

Larger problems will need numerical approximations (e.g., EnKF).
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An iterated block particle filter for parameter estimation
The IBPF algorithm

Initialize: model&parameters

Perturb: parameters

Predict: stochastic dynamics

Reweight ReweightReweight

Resample
state

Resample
state

Resample
state

Resample
param.

Resample
param.

Resample
param.

n = 1:N

Recombine

m = 1:M

Blockwise

1
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Simulated data UK towns

Log−likelihood Log−likelihood

• IBPF applied to
simulations and data.

• Multiple searches from
random starting points.

• Top 25% of searches
are subsequently refined.
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IBPF for measles, 20 cities

• simulations (top panel)
dash line: likelihood at truth

• data (bottom panel)
dash line: MLE for case C.

(A) 9 shared parameters,
4× 20 unit-specific
parameters

(B) all parameters
unit-specific

(C) all unit-specific, with
constant immigration instead
of coupling

21



Inferences from the previous slide

IBPF can work for simulated data, since it finds likelihoods higher
than the truth when the model is well-specified

When coupled by a gravity model, simulated data show evidence
against a constant immigration model.

Data do not favor this gravity model over a constant immigration
model.
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He et al (2010) estimates. r is rank correlation with N1950

N1950 R0 IP LP α a ι ψ ρ σSE
Halesworth 2200 33.00 2.30 7.90 0.95 0.38 0.0091 0.64 0.75 0.075

Lees 4200 30.00 2.10 8.50 0.97 0.15 0.0310 0.68 0.61 0.080

Mold 6400 21.00 1.80 5.90 1.00 0.27 0.0140 2.90 0.13 0.054

Dalton in Furness 11000 28.00 2.00 5.50 0.99 0.20 0.0390 0.82 0.46 0.078

Oswestry 11000 53.00 2.70 10.00 1.00 0.34 0.0300 0.48 0.63 0.070

Northwich 18000 30.00 3.00 8.50 0.95 0.42 0.0600 0.40 0.80 0.086

Bedwellty 29000 25.00 3.00 6.80 0.94 0.16 0.0400 0.95 0.31 0.061

Consett 39000 36.00 2.70 9.10 1.00 0.20 0.0730 0.41 0.65 0.071

Hastings 66000 34.00 5.40 7.00 1.00 0.30 0.1900 0.40 0.70 0.096

Cardiff 240000 34.00 3.10 9.90 1.00 0.22 0.1400 0.27 0.60 0.054

Bradford 290000 32.00 3.40 8.50 0.99 0.24 0.2400 0.19 0.60 0.045

Hull 300000 39.00 5.50 9.20 0.97 0.22 0.1400 0.26 0.58 0.064

Nottingham 310000 23.00 3.70 5.70 0.98 0.16 0.1700 0.26 0.61 0.038

Bristol 440000 27.00 4.90 6.20 1.00 0.20 0.4400 0.20 0.63 0.039

Leeds 510000 48.00 11.00 9.50 1.00 0.27 1.2000 0.17 0.67 0.078

Sheffield 520000 33.00 6.40 7.20 1.00 0.31 0.8500 0.18 0.65 0.043

Manchester 700000 33.00 6.90 11.00 0.96 0.29 0.5900 0.16 0.55 0.055

Liverpool 800000 48.00 9.80 7.90 0.98 0.30 0.2600 0.14 0.49 0.053

Birmingham 1100000 43.00 12.00 8.50 1.00 0.43 0.3400 0.18 0.54 0.061

London 3400000 57.00 13.00 13.00 0.98 0.55 2.9000 0.12 0.49 0.088

r 1 0.46 0.95 0.32 0.11 0.30 0.9300 -0.93 -0.20 -0.330
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Cholera in Haiti, 2010-2019

• 820,000 reported cases

• nearly 10,000 deaths

• Population of
10,000,000 in 10
départements

• Lee et al (2020)
developed 4 models to
guide vaccination plans:

1. stochastic, national
2. ODE, spatial
3. stochastic, spatial
4. agent based

https://doi.org/10.5194/nhess-20-471-2020

• Wheeler et al (2023) continued the data analysis
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Haiti cholera weekly reports 2010-2019 (log scale)
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Log-likelihoods of models and an ARMA benchmark

Model 1 (p) Model 2 (p) Model 3 (p)

Wheeler et al -2731.3 (15) -21957.3 (6) -17850.4 (35)
Lee et al -3030.9 (20) -29367.4 (6) -31840.8 (29)
Log-ARMA(2,1) -2803.7 (4) -18027.0 (40) -18027.0 (40)

Model 1 (stochastic, aggregated):
We add process overdispersion, and beat the ARMA benchmark.

Model 2 (deterministic, spatial):
We use a log-normal measurement model. ODE models fall far short of
the ARMA benchmark.

Model 3 (stochastic, spatial):
We fit the model using IBPF, and beat the ARMA benchmark.
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Evidence for a decreasing transmission rate in Model 1
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COVID in 375 cities in China, 10-23 January, 2020

Metapopulation data were used to infer the fraction of asymptomatic
cases and their contagiousness (Li et al, Science, May 2020).

SEIR model with asymptomatics, reporting delay, and coupling based
on cell phone data.

Inference using iterated EnKF.

The time interval predates Wuhan travel restrictions.

Total cases 801, Wuhan 454, Chongqing 27, Beijing 26.

259 cities with 0 cases, 99 with 1–5 cases, 17 with > 5 cases.

0 cases reported for all cities during Jan 10–15.
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Top: data. Middle: IBPF fit. Bottom: IEnKF fit
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Technical issues with EnKF

EnKF is based on a continuous Gaussian approximation.

Log-likelihoods with respect to counting measure are never positive,
and cannot properly be compared with log-likelihoods corresponding
to continuous densities.

For data with many zeros, the unbounded EnKF likelihood can
substantially bias the MLE.

Adapting EnKF for count data is non-trivial (Katzfuss et al, JASA,
2019).
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Future work

• We anticipate continued progress in modeling and inference for nonlinear
spatiotemporal partially observed stochastic dynamic systems.

• As long as the spatPomp package facilitates data analysis, we expect
continuing package development.

31



Filtering U -dimensional correlated Brownian motion
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Cov
(
Xu,n −Xu,n−1, Xũ,n −Xũ,n−1

)
∼ 0.4|u−ũ|
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Filtering U units of Lorenz 96 toy atmospheric model
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dXu(t) =
{
Xu−1(t)

(
Xu+1(t)−Xu−2(t)

)
−Xu(t) + F

}
dt+ σ dBu(t)
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