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Example: surveillance for emerging SARS-CoV-2 variants

nextstrain.org (Hadfield et al., 2018)
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Example: surveillance for emerging SARS-CoV-2 variants
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Example: surveillance for emerging SARS-CoV-2 variants
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What is phylodynamics?

Broadly:
Phylodynamics is the project of inferring
determinants of epidemic spread
using
genomic data from pathogen samples. U

S

In this talk:
Phylodynamics means using
genomic data
to infer
stochastic dynamic transmission models.
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Core problems of phylodynamics
~— information flow

genealogy
stochastic transmission model
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Core problems of phylodynamics
prediction

stochastic transmission model
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Core problems of phylodynamics

S = set of genome sequences

® = genealogical tree relating the sequences
E = sequence evolution model

D = dynamic, stochastic transmission model
Y = other time series data

£ = f(S,Y|D,E) = f F(S|%, E)f(@, ¥|D) do

f(S|®, E) = phylogenetic likelihood
f(®,Y|D) = phylodynamic likelihood
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Current approaches

@ Coalescent models
e asymptotic large-population justification
e naturally studied backwards in time
@ hard to relate formally to small-population models specified forwards in time, except in
special cases.

@ Linear birth-death processes

o tractability stems from independence of lineages

e simple branching models struggle to explain nonlinear phenomena such as susceptible
depletion.

o linearization is possible under large-population, small sample-fraction assumptions

@ How can we investigate scientifically motivated nonlinear models?
@ An exact likelihood-based method would be statistically efficient.
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Overview

@ We show how a given population process
induces a unique genealogy process.

@ Pruning and obscuration project a genealogy
onto observable data.

@ We derive the exact likelihood as the solution to
a nonlinear filtering problem

@ This equation can be solved by standard Monte
Carlo methods.

Details on the arXiv (King et al., 2024)
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Population process
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Population process

@ Population process: a non-explosive Markov jump process, X; € X, r€ R,.
@ Initial-state distribution, py:

Prob [Xo € €] — f po(x) dx
&
@ Jump rates: a(r,x,x') = rate of jump x — X’

a(t,x,x') =0, J a(t,x,x')dx’ < o
X

@ Multiple events at each jump are allowed.
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Population process

Kolmogorov forward equation (KFE):

aav:(t, x) = Jw(t,x’) a(t,x',x)dx' — fw(t, x) at, x, x') dx’

and
w(0,x) = po(x)
then
fw(t, x)dx = Prob [X; € €].
€

KFE is sometimes called the master equation for X;.
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Population process

%:(t’ X) = Jw(t,x') a(t,x' ) x)dx' — jw(l‘, x) aft, x,x') dx’
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Population process

U = {Trans, Prog, Recov, Wane, Sample}

a(;:(t, x) = Z {Jw(t,x’) ay(t, %, x) dx' — Jw(t,x) (2, x,x') dx'}

uclU
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Population process

U = {Trans, Prog, Recov, Wane, Sample}

Bl S+ 1)1 SI
—W(t,s,E,I,R) P0G+ DI w(t,S 4+ 1,E—1,1,R) — i)
ot N N

+y T+ D)w(t,S,E,T+1,R—1) — vIw(t,S,E,I,LR) + w (R + )w(t,S — 1,E,,R+ 1) — wRw(1, S, E, I, R)

w(t, S,E,I,R) + o (E+ 1) w(t,S,E 4+ 1,1 — 1,R) — o0 Ew(t, S, E, I, R)
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What is a genealogy?
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What is a genealogy?

@ LL: countable set of labels

@ partit(L): set of collections of finite, mutually-disjoint
subsets of L.

@ partition fineness defines a partial order, <, on partit(L).

@ The tree structure of a genealogy is a monotone, cadlag
map
Z :0,T] — partit(L) such that 7, < r, implies Z;, < Z,,.
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What is a genealogy?
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What is a genealogy?
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What is a genealogy?

@ A coloring, Y, is an assignment of a deme to each point of the genealogy.
Forte [0,7], a alabel, Y,(a) = (Y%(a), Y"(a)) e D x Z,
Y4(a) is the deme in which the lineage of « is located at time 1.

Y"(a) is the number of nodes encountered along the lineage a in going from time 0 to
.

Y"(a) is a simple counting process.
Given a tree Z, let Y(Z) denote the set of colorings Y that are compatible with Z

Formally, a genealogy is a triple, (T,Z,Y).
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What is a genealogy?
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Event types

I
S | E [—f | R

D = {E, I}
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Event types

U = {Trans, Prog, Recov, Wane, Sample}
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Event types

If we write

a(t,x,x') = Z au(t, x,x'),

uelU
the KFE becomes

aa—v:(t,x) = Zu: fw(t, x) ay(t, X', x) dx’ — Zu: fw(t, x) oy (2, x,x') d’
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Event types
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Event types
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Event types

U = {Trans, Prog, Recov, Wane, Sample}
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A population process induces a genealogy process

@ G, is a stochastic process on the space of genealogies.
@ The map X — G is random.

@ Key assumption: Lineages within a deme are exchangeable.
There is no more structure than is implied by the population process.

@ Simulation code on github.com/kingaa/phylopomp

@ Animations at
https://kingaa.github.io/manuals/phylopomp/vignettes/
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Full genealogy
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Pruned genealogy
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Local structure of a pruned genealogy
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Top row shows the unpruned genealogy in neighborhood of an event.
Bottom row shows the corresponding pruned genealogy.
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Local structure of a pruned genealogy

A C__ E__
t_ = ==
B__ t D llllllllllllllll t F ——— t
t - e
................ PY

Forx e X, i e D, n;(x) is the occupancy of deme i when the system is in state x.
In panel A n = (npiye, nyellow) = (4,4); inpanel Cn = (3,5);
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Local structure of a pruned genealogy

A C__ E__
t_ = ==
B__ t D llllllllllllllll t F ——— t
t - e
................ PY

ForueU,ieD, r!is the production of event u in deme i.
In panel A, r = (rpiue, yeliow) = (1,1); in panel E, r = (0,2).
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Local structure of a pruned genealogy
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The lineage count, ¢;(t), is the number of unpruned lineages in deme i at time 7.
In this case, for all panels, ¢ = (2,2).
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Local structure of a pruned genealogy
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The saturation, s;, is the number of unpruned lineages in deme i descending from the
event. In panels B and D, s = (1,0); in panel F, s = (0, 1).
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Local structure of a pruned genealogy
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Pruned genealogy
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A pruned genealogy is specified by two functions of time, (Y,Z):
Z, gives the local topological structure; Y, gives the local coloring.
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Obscured genealogy
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An obscured genealogy is specified by (T, Z).
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Binomial ratio

For n,r,¢,s € Z2, define the binomial ratio
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Theorem: likelihood of a pruned genealogy
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Theorem: likelihood of a pruned genealogy

Suppose that P = (Y, Z) is a given pruned genealogy with depth T.
Define

v e (1) L) N
Gu(x,y,Y") (r” s(y)y,))Qu(y,y)

Here, Q = 1 if the local structure of P is compatible with an event of type u at that time;
0 = 0 otherwise.
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Theorem: likelihood of a pruned genealogy

If w = w(t,x) satisfies the initial condition w(0, x) = po(x) and the filter equation

J v ’ / /

a—v:(t,x) =Zu] fw(t,x’) o(1,x %) u(x, Yy, Y,) dx’ — Z Jw(t,x) ou(t,x,x')dx', 1 ¢ ev(P),
wit,x) =Y J (6 X) alt, X' X) Gulx, Yo, Y1) Y, re ev(P),

then the likelihood of P is
L= Jw(T,x) dx.
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Theorem: likelihood of a pruned genealogy
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Theorem: likelihood of an obscured genealogy
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Theorem: likelihood of an obscured genealogy

Let (T, Z) be a given obscured genealogy. Then there are probability kernels = and ¢ such
that if

Bu(t7x7-x/ay7y/) = au(t’xvxl) ﬂ-u(l?x7xlay7y/)7 d)u(taxaxlay7y,) = %7

and if w = w(t, x, y) satisfies the initial condition w(0,x,y) = po(x) 1{g(x,y) > 0} and the
filter equation

= JW(M'J') Bu(t; X, 2,y y) hult, 6,3,y y) d' — ZJW(l,x,y) Bult,x, Xy, y) ', 1¢ ev(Z),
uy’ uy’
W(tvxa y) = Zj‘w(tax,7y,) Bu(tax,rxa ylvy) wu(t,xl,x,y',y) dx,) re eV(Z)v
then the likelihood of (T,Z) is

£ =Zy:jw(T,x,y)dx
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Theorem: likelihood of an obscured genealogy
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Linear birth-death model

A B -124 i
— —
o— I—
< 1281
Is) Ix—
o T
- < e
| SRR 5
s X -1321
I =
S — 1000 particles I
— 10000 particl
~1364 particles I,__
b sl — exact
I
10 15 2.0
0 1 2 3 4 5 A

Uniform sampling.
Exact likelihoood is available in closed form.
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SIRS model

=2

Between genealogical events:
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SIRS model

=2

At genealogical events:

28650 (1,8 + 1,1 — 1,R), branch point at 1,
w(t,S,I,R) = < Y w(t,S,I,R), internal sample at 1,

Y (I —2)w(t,S,I,R), terminal sample at .

22/30



SIRS model
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Uniform sampling.
One deme only.
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SEIRS model
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Concluding remarks

@ The theory corrects and strictly extends all existing
likelihood-based phylodynamic methods (e.g., Volz et al., 2009;
Rasmussen et al., 2011; Stadler, 2010; Volz, 2012; Volz & Frost,
2014; Rasmussen et al., 2014; Vaughan et al., 2019).

@ All computations can be carried out forward in time.
This expands the class of models that can be entertained.

@ There is great flexibility in the sampling model.

@ Other data streams can be readily and simultaneously assimilated.
@ Applications beyond infectious disease epidemiology.

@ Full details in King et al. (2024).
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Outstanding challenges

@ There is some way to go before these results translate into algorithms.
@ Key issues: scalability and expense

@ Efficient choice of importance-sampling kernel
(Borrowing information from future is allowed.)

@ Phylogenetic uncertainty
@ Efficient simulation algorithms
@ Reassortment and recombination
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@ A discretely structured Markov population process uniquely
induces a genealogy-valued Markov process.

@ The likelihood of an observed genealogy satisfies a nonlinear
filtering equation.

@ Existing tree-based phylodynamic approaches are special
cases.

@ Various approaches to solving this equation are possible and
have yet to be fully explored.

@ These results liberate us to entertain models that more closely
match our scientific questions, with less hindrance from
inference methodology.
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