|
Edward Ionides
Professor of Statistics
The University of Michigan
1085 South University Ave
Ann Arbor, MI 48109-1107
Phone: 734.615.3332
Fax: 734.763.4676
E-mail: ionides@umich.edu
Office: 453 West Hall
|
Curriculum vitae.
Publications;
Student research.
Research interests:
Time series analysis with applications including ecology, epidemiology and health economics. Methodological work on inference for partially observed stochastic dynamic systems.
Teaching:
STATS 401: Applied Statistical Methods II.
MATH/STATS 425: Introduction to Probability.
STATS/DATASCI 531: Analysis of Time Series.
STATS/DATASCI 631: Modeling and Analysis of Time Series Data.
STATS 620: Applied Probability and Stochastic Modeling.
STATS 700: Topics in Applied Statistics: Phylodynamic Inference.
STATS 810: Literature Proseminar.
Research links:
Slides for some talks.
The R package pomp.
The R package pomp.
The R package spatPomp.
The Python package pypomp.
Simulation-based inference for epidemiological dynamics.
Likelihood-based inference for dynamic systems.
Selected publications:
-
Wheeler, J., Rosengart, A. L., Jiang, Z., Tan, K., Treutle, N. and Ionides, E. L. (2024). Informing policy via dynamic models: Cholera in Haiti.
PLOS Computational Biology 20 e1012032.
doi.
arxiv.
github.
-
Ionides, E. L., Asfaw, K., Park, J., and King, A. A. (2023).
Bagged filters for partially observed interacting systems.
Journal of the American Statistical Association 118 1078-1089.
doi.
arxiv.
github.
-
Ning, N. and Ionides, E. L. (2023).
Iterated block particle filter for high-dimensional parameter learning: Beating the curse of dimensionality.
Journal of Machine Learning Research 24(82) 1-76.
pdf.
arxiv.
github.
-
Breto, C., Ionides, E. L., and King, A. A. (2019).
Panel data analysis via mechanistic models.
Journal of the American Statistical Association 115 1178-1188.
doi.
arxiv.
github.
-
Ionides, E. L., Nguyen, D., Atchade, Y., Stoev, S. and King, A. A.
(2015). Inference for dynamic and latent variable models via iterated, perturbed Bayes maps. Proceedings of the National Academy of Sciences of the USA 112 719-724. doi. pdf.
-
Ionides, E. L, Bhadra, A., Atchade, Y. and King, A. A. (2011). Iterated filtering. Annals of Statistics 39 1776-1802.
doi.
pdf.
arxiv.
-
Breto, C., He, D., Ionides, E. L. and King, A. A. (2009).
Time series analysis via mechanistic models.
Annals of Applied Statistics 3 319-348.
doi.
pdf.
arxiv.
-
King, A. A., Ionides, E. L., Pascual, M. and Bouma, M. J. (2008).
Inapparent infections and cholera dynamics. Nature 454 877-880.
doi.
-
Ionides, E. L., Breto, C. and King, A. A. (2006).
Inference for nonlinear dynamical systems.
Proceedings of the National Academy of Sciences 103 18438-18443.
doi.
Supporting online material.
pdf.
supporting text.
|